THE RESPONSE OF APPLE TREES TO ORCHARD FLOOR MANAGEMENT

1990 ◽  
pp. 188-188
Author(s):  
M.L. Parker ◽  
J. Hull Jr
1997 ◽  
Vol 12 (4) ◽  
pp. 162-172 ◽  
Author(s):  
Alan R. Biggs ◽  
Tara A. Baugher ◽  
Alan R. Collins ◽  
Henry W. Hogmire ◽  
James B. Kotcon ◽  
...  

AbstractWe compared conventional and alternative systems for the establishment of apple trees on a replicated, whole-orchard scale. The alternative system consisted of a K-31 fescue sod rotation followed by planting of trees directly into sod that had been kitted with herbicide. The conventional system consisted of a standard corn rotation, accompanied by application of fertilizer and nematicide. Orchard floor management in the three years following tree planting was based on the use of both pre-and post-emergence herbicides in the conventional system and only contact herbicide in the alternative system. The study documented tree growth, pest incidence, and nitrate mobility in the two systems. The alternative system compared favorably with the conventional system for the growth and establishment of four apple cultivars. Many advantages accompanied the killed sod system, including less subsurface leaching ofnitrate-N and lower costs (largely from decreased herbicide use). The alternative system provided an economical alternative to the problem of soil organic matter depletion in conventional orchard soils without requiring increased use of commercial fertilizers. Grower concerns regarding increased potential for vole damage and poor initial tree growth were unsubstantiated.


HortScience ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 637-642 ◽  
Author(s):  
Dan TerAvest ◽  
Jeffrey L. Smith ◽  
Lynne Carpenter-Boggs ◽  
Lori Hoagland ◽  
David Granatstein ◽  
...  

Synchronizing the supply of plant-available nitrogen (N) from organic materials with the N needs of apple trees is essential to cost-effective organic apple production. Tree growth and organic matter mineralization are affected by orchard floor management. This study examines the effects of three orchard floor management systems, cultivation, wood chip mulch, and a legume cover crop, on the accumulation and partitioning of compost-derived N in young apple (Malus domestica Borkh.) trees at different compost application dates across two growing seasons. Compost enriched with 15N was applied to apple trees in April, May, and June of 2006 and 2007, and trees were excavated in Sept. 2007 to determine the fate of labeled compost N. Trees with wood chip mulch had significantly greater dry weight and N accumulation in vegetative tree components than trees with cultivation or legume cover. Fruit yields were similar between cultivation and wood chip treatments despite less vegetative growth under cultivation, as these trees partitioned more dry weight into fruit (44%) than wood chip mulch trees (31%). Nitrogen-use efficiency by trees was lower with a living legume cover crop than in other treatments due to competition for resources. In the cover crop aboveground biomass, 20% to 100% of the N was derived from compost. In comparison, only 5% to 40% of N in the decomposing wood chip mulch originated from compost. Tree reserves were an important source of N for spring fruit and leaf growth in all treatments, but significantly more so for trees in the cultivation treatment. Fruit and leaves were strong sinks for compost N early in the season, with trees allocating 72% of spring N uptake into leaves and fruit. In the summer, N uptake increased improving compost N-use efficiency. Summer N was preferentially allocated to perennial tissues (71%), bolstering N reserves. Trees with wood chip mulch performed well and had greater capacity to build N reserves, making wood chips ideal for establishing young organic apple orchards. However, as the orchard matures, it may be beneficial to switch to a groundcover that reduces tree vegetative growth.


2019 ◽  
Vol 81 (6) ◽  
pp. 45-57
Author(s):  
L.A. Dankevych ◽  
◽  
F.V. Muchnyk ◽  
V.P. Patyka ◽  
◽  
...  

2015 ◽  
Vol 68 ◽  
pp. 250-256 ◽  
Author(s):  
N.T. Amponsah ◽  
M. Walter R.M. Beresford ◽  
R.W.A. Scheper

Leaf scar wounds are important sites for Neonectria ditissima infection of apple trees Monitoring leaf fall in Scilate/Envy and Braeburn trees to estimate leaf scar wound presence showed maximum leaf scar incidence occurred in June (early winter) Wounds detected in New Zealand apple orchards were bud scale scars fruit thinning and picking wounds leaf scars and pruning cuts Picking wounds are caused during harvest where the pedicel is detached from the shoot Susceptibility of these different types of wounds was determined using artificial inoculation of N ditissima conidia during the season Pruning cut wounds were the most susceptible followed by fruit picking and thinning wounds and the least susceptible were leaf scar wounds No infections were observed when bud scale wounds were inoculated There was no difference in wound susceptibility between cultivars but overall Scilate/Envy wounds developed more lesions than Braeburn wounds


2020 ◽  
Vol 62 ◽  
pp. 85-90
Author(s):  
L. V. Tashmatova ◽  
O. V. Matsneva ◽  
T. M. Khromova ◽  
V. V. Shakhov

The article presents methods of experimental polyploidy of fruit, berry and ornamental plants. The purpose of this review is to highlight the problems and prospects of polyploidization of plants in the open ground and in vitro culture and the possibility of their application for apple trees. For the purpose of obtaining apple tetraploids as donors of diploid gametes, seed seedlings were treated with a solution of colchicine in concentrations of 0.1-0.4 % for 24 and 48 hours. Colchicine concentrations of 0.3 % and 0.4 % at 48 hours of treatment had a detrimental eff ect on their development. As a result, tetraploids and chimeras were obtained from seeds from free pollination of the varieties Orlik, Svezhest, Kandil Orlovsky, as well as from seeds obtained from crossing the varieties Svezhest×Bolotovskoe, Moskovskoe Оzherel’e×Imrus, Girlyanda×Venyaminovskoe. The optimal concentration of colchicine was 0.1 %. Methods of colchicine treatment have been studied: 1) adding to the nutrient medium, colchicine concentration: 0.01%, 0.02%, exposure time 24h-19 days; 2) applying amitotic solution to the growth point, colchicine concentration: 0.1 %, 0.2 %, exposure time 24h-7 days. To increase the penetration of colchicine through the cell walls, a 0.1 % dimexide solution was used. Studies have shown that high concentrations and prolonged exposure to colchicine reduce the viability of explants.


2019 ◽  
Vol 57 (1) ◽  
pp. 67-73
Author(s):  
M. M. Isin ◽  
◽  
J. K. Jumanova ◽  
S. S. Soltanbekov ◽  
E. E. Omarov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document