Grapevine EDS1 regulatory region and salicylic acid accumulation: pathway components differently linked to powdery mildew resistance

2021 ◽  
pp. 663-668
Author(s):  
M.H. Hagemann ◽  
E. Sprich ◽  
P. Winterhagen
2017 ◽  
Vol 30 (11) ◽  
pp. 906-918 ◽  
Author(s):  
Denise Pereira Torres ◽  
Reinhard K. Proels ◽  
Harald Schempp ◽  
Ralph Hückelhoven

Plant RBOH (RESPIRATORY BURST OXIDASE HOMOLOGS)-type NADPH oxidases produce superoxide radical anions and have a function in developmental processes and in response to environmental challenges. Barley RBOHF2 has diverse reported functions in interaction with the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei. Here, we analyzed, in detail, plant leaf level- and age-specific susceptibility of stably RBOHF2-silenced barley plants. This revealed enhanced susceptibility to fungal penetration of young RBOHF2-silenced leaf tissue but strongly reduced susceptibility of older leaves when compared with controls. Loss of susceptibility in old RBOHF2-silenced leaves was associated with spontaneous leaf-tip necrosis and constitutively elevated levels of free and conjugated salicylic acid. Additionally, these leaves more strongly expressed pathogenesis-related genes, both constitutively and during interaction with B. graminis f. sp. hordei. Together, this supports the idea that barley RBOHF2 contributes to basal resistance to powdery mildew infection in young leaf tissue but is required to control leaf cell death, salicylic acid accumulation, and defense gene expression in older leaves, explaining leaf age–specific resistance of RBOHF2-silenced barley plants.


2009 ◽  
Vol 35 (5) ◽  
pp. 761-767 ◽  
Author(s):  
Gen-Qiao LI ◽  
Ti-Lin FANG ◽  
Hong-Tao ZHANG ◽  
Chao-Jie XIE ◽  
Zuo-Min YANG ◽  
...  

2015 ◽  
Vol 41 (4) ◽  
pp. 515 ◽  
Author(s):  
Zhong-Yi WANG ◽  
Hai-Ning FU ◽  
Su-Li SUN ◽  
Can-Xin DUAN ◽  
Xiao-Fei WU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document