Developing of Specific Transcription Sequences P21461 and P33259 on Dasypyrum villosum 6VS and Application of Molecular Markers in Identifying Wheat-D. villosum Breeding Materials with Powdery Mildew Resistance

2017 ◽  
Vol 43 (7) ◽  
pp. 983 ◽  
Author(s):  
Chang LIU ◽  
Shi-Jin LI ◽  
Ke WANG ◽  
Xing-Guo YE ◽  
Zhi-Shan LIN
2021 ◽  
Author(s):  
Mateusz Maksymilian Dyda ◽  
Mirosław Tyrka ◽  
Gabriela Gołębiowska ◽  
Marcin Rapacz ◽  
Maria Wędzony

Abstract Combining to tolerance to biotic and abiotic stresses is important target for modern triticale breeding. Cultivation of varieties resistant to fungal pathogens is economically and environmentally important and may lead to reducing of the use of fungicides. Molecular markers are necessary for accumulation of advantageous alleles in the best genotypes by means of marker-assisted and genomic selection approaches. In present research, QTL regions associated with the powdery mildew resistance at adult plant stage were evaluated in order to provide the effective selection tools. Testing of DH population in multiple environments under natural infestation revealed 20 QTL on wheat (4A, 3B, 4B) and rye (2R, 4R, 5R, 6R) chromosomes. Regions explained 8.1% - 29.3% of phenotypic variation depending of the trait, localization and year of the experiment. Main QTL with effect exceeding 15% were found on chromosomes 3B, 4B, 2R, 5R and 6R. QTL and candidate genes located on chromosomes 4B, 2R, 5R and 6R are so far reported for the first time as regions associated with PM resistance in the adult triticale plants. Additionally, within all QTL, 21 candidate genes associated with the PM resistance were revealed. Predicted function of protein encoded by these genes include triggering a defense system which restricts the pathogen growth, enzyme activity, regulation of hormone-activated pathways, transcriptional corepressor complex and cell wall construction. Availability of QTL, molecular markers together with candidate genes linked with the powdery mildew resistance can be validated on triticale lines and varieties and then, used in MAS to improve modern breeding.


Genome ◽  
2010 ◽  
Vol 53 (5) ◽  
pp. 400-405 ◽  
Author(s):  
Sung-Taeg Kang ◽  
M.A. Rouf Mian

Powdery mildew (caused by Microsphaera diffusa Cooke & Peck) is a common disease of soybean in many soybean-growing regions of the world and under greenhouse conditions. The previously reported Rmd locus of soybean for resistance to powdery mildew was mapped on soybean molecular linkage group J (chromosome 16). We have discovered a single dominant gene in PI 243540 that provides season-long resistance to powdery mildew. The objective of this study was to map the powdery mildew resistance gene in PI 243540 with PCR-based molecular markers. One hundred eighty-four F2 plants and their F2:3 families from a cross between the powdery mildew susceptible cultivar ‘Wyandot’ and PI 243540 were screened with M. diffusa in greenhouses. Bulked segregant analysis (BSA) with SSR markers was used to identify the tentative genomic location of the gene. The BSA localized the gene to a genomic region in soybean chromosome 16. A linkage map with seven SSR and six SNP markers flanking the gene was constructed. We positioned the gene between SSR marker Sat_224 and SNP marker BARC-021875-04228 at distances of 9.6 and 1.3 cM from the markers, respectively. The map position of the gene was slightly different from previously reported map positions of the only known Rmd locus. We have mapped a single dominant gene, tentatively called Rmd_PI243540, near the previously known Rmd locus on chromosome 16. The molecular markers flanking the gene will be useful for marker-assisted selection of this gene.


Sign in / Sign up

Export Citation Format

Share Document