salicylic acid accumulation
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 14)

H-INDEX

24
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Yang ◽  
Pengtao Liu ◽  
Xuncheng Wang ◽  
Aolin Jia ◽  
Diqiu Ren ◽  
...  

AbstractPlant immunity frequently incurs growth penalties, which known as the trade-off between immunity and growth. Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits but rarely for disease resistance. Here, we report that the central circadian oscillator, CCA1, confers heterosis for bacterial defense in hybrids without growth vigor costs, and it even significantly enhances the growth heterosis of hybrids under pathogen infection. The genetic perturbation of CCA1 abrogated heterosis for both defense and growth in hybrids. Upon pathogen attack, the expression of CCA1 in F1 hybrids is precisely modulated at different time points during the day by its rhythmic histone modifications. Before dawn of the first infection day, epigenetic activation of CCA1 promotes an elevation of salicylic acid accumulation in hybrids, enabling heterosis for defense. During the middle of every infection day, diurnal epigenetic repression of CCA1 leads to rhythmically increased chlorophyll synthesis and starch metabolism in hybrids, effectively eliminating the immunity-growth heterosis trade-offs in hybrids.


Author(s):  
Tatsuo Sato ◽  
Nur Akbar Arofatullah ◽  
Sayuri Tanabata

High-temperature treatment induces disease resistance in various plants (heat shock-induced resistance; HSIR). The role of heat shock transcriptional factors (Hsfs) was investigated in this paper. Heat shock treatment induced disease resistance and up-regulate gene expression of pathogenesis related protein; PR1a2 at 12 and 24 h after treatment. PR1a2 has putative Hsfs binding site in the upstream area. On the other hand, a heat shock transcription factor HsfA2 up-regulated at 6 h after treatment, which was 6 h earlier than salicylic acid accumulation. This time lag suggested the direct contribution of Hsfs, additionally to salicylic acid pathway in the regulation of HSIR in tomato.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1316
Author(s):  
Ning Wang ◽  
Na Song ◽  
Zejun Tang ◽  
Xiaojie Wang ◽  
Zhensheng Kang ◽  
...  

Brachypodium distachyon, as an effective model of cereal grains, is susceptible to most destructive cereal pathogens. Senescence associated gene 101 (SAG101) has been studied extensively in Arabidopsis. SAG101 is one of the important regulators of plant immunity. However, no homologous genes of AtSAG101 were found in B. distachyon. In this study, the AtSAG101 gene was transformed into B. distachyon. Three transgenic plant lines containing the AtSAG101 gene were confirmed by PCR and GUS gene activity. There were fewer Puccinia brachypodii urediospores in the AtSAG101-overexpressing plants compared to wild type plants. P. brachypodii biomass was obviously decreased in AtSAG101 transgenic plants. The length of infection hyphae and infection unit areas of P. brachypodii were significantly limited in transgenic plants. Moreover, there were small lesions in AtSAG101 transgenic plants challenged by Magnaporthe oryzae. Salicylic acid accumulation was significantly increased, which led to elevated pathogenesis-related gene expression in transgenic B. distachyon inoculated by P. brachypodii or M. oryzae compared to wild type plants. These results were consistent with infected phenotypes. Overexpression of AtSAG101 in B. distachyon caused resistance to M. oryzae and P. brachypodii. These results suggest that AtSAG101 could regulate plant resistance in B. distachyon.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 332 ◽  
Author(s):  
Aurélia Lornac ◽  
Marien Havé ◽  
Fabien Chardon ◽  
Fabienne Soulay ◽  
Gilles Clément ◽  
...  

Sulphur deficiency in crops became an agricultural concern several decades ago, due to the decrease of S deposition and the atmospheric sulphur dioxide emissions released by industrial plants. Autophagy, which is a conserved mechanism for nutrient recycling in eukaryotes, is involved in nitrogen, iron, zinc and manganese remobilizations from the rosette to the seeds in Arabidopsis thaliana. Here, we have compared the role of autophagy in sulphur and nitrogen management at the whole plant level, performing concurrent labelling with 34S and 15N isotopes on atg5 mutants and control lines. We show that both 34S and 15N remobilizations from the rosette to the seeds are impaired in the atg5 mutants irrespective of salicylic acid accumulation and of sulphur nutrition. The comparison in each genotype of the partitions of 15N and 34S in the seeds (as % of the whole plant) indicates that the remobilization of 34S to the seeds was twice more efficient than that of 15N in both autophagy mutants and control lines under high S conditions, and also in control lines under low S conditions. This was different in the autophagy mutants grown under low S conditions. Under low S, the partition of 34S to their seeds was indeed not twice as high but similar to that of 15N. Such discrepancy shows that when sulphate availability is scarce, autophagy mutants display stronger defects for 34S remobilization relative to 15N remobilization than under high S conditions. It suggests, moreover, that autophagy mainly affects the transport of N-poor S-containing molecules and possibly sulphate.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Fang Liu ◽  
Qian Zhao ◽  
Zhenhua Jia ◽  
Cong Song ◽  
Yali Huang ◽  
...  

Abstract Backgroud Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) to communicate each other and to coordinate their collective behaviors. Recently, accumulating evidence shows that host plants are able to sense and respond to bacterial AHLs. Once primed, plants are in an altered state that enables plant cells to more quickly and/or strongly respond to subsequent pathogen infection or abiotic stress. Results In this study, we report that pretreatment with N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) confers resistance against the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (PstDC3000) in Arabidopsis. Pretreatment with 3OC8-HSL and subsequent pathogen invasion triggered an augmented burst of hydrogen peroxide, salicylic acid accumulation, and fortified expression of the pathogenesis-related genes PR1 and PR5. Upon PstDC3000 challenge, plants treated with 3OC8-HSL showed increased activities of defense-related enzymes including peroxidase, catalase, phenylalanine ammonialyase, and superoxide dismutase. In addition, the 3OC8-HSL-primed resistance to PstDC3000 in wild-type plants was impaired in plants expressing the bacterial NahG gene and in the npr1 mutant. Moreover, the expression levels of isochorismate synthases (ICS1), a critical salicylic acid biosynthesis enzyme, and two regulators of its expression, SARD1 and CBP60g, were potentiated by 3OC8-HSL pretreatment followed by pathogen inoculation. Conclusions Our data indicate that 3OC8-HSL primes the Arabidopsis defense response upon hemibiotrophic bacterial infection and that 3OC8-HSL-primed resistance is dependent on the SA signaling pathway. These findings may help establish a novel strategy for the control of plant disease.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wei Ye ◽  
Jinlan Jiang ◽  
Yuling Lin ◽  
Kai-Wun Yeh ◽  
Zhongxiong Lai ◽  
...  

Abstract Background Erwinia chrysanthemi (Ec) is a destructive pathogen which causes soft-rot diseases in diverse plant species including orchids. We investigated whether colonization of Oncidium roots by the endophytic fungus Piriformospora indica (Pi) restricts Ec-induced disease development in leaves, and whether this might be related to the regulation of nucleotide binding site-leucine rich repeat (NBS-LRR) Resistance (R) genes. Results Root colonization of Oncidium stackings by Pi restricts progression of Ec-induced disease development in the leaves. Since Pi does not inhibit Ec growth on agar plates, we tested whether NBS-LRR R gene transcripts and the levels of their potential target miRNAs in Oncidium leaves might be regulated by Pi. Using bioinformatic tools, we first identified NBS-LRR R gene sequences from Oncidium, which are predicted to be targets of miRNAs. Among them, the expression of two R genes was repressed and the accumulation of several regulatory miRNA stimulated by Ec in the leaves of Oncidium plants. This correlated with the progression of disease development, jasmonic and salicylic acid accumulation, ethylene synthesis and H2O2 production after Ec infection of Oncidium leaves. Interestingly, root colonization by Pi restricted disease development in the leaves, and this was accompanied by higher expression levels of several defense-related R genes and lower expression level of their target miRNA. Conclusion Based on these data we propose that Pi controls the levels of NBS-LRR R mRNAs and their target miRNAs in leaves. This regulatory circuit correlates with the protection of Oncidium plants against Ec infection, and molecular and biochemical investigations will demonstrate in the future whether, and if so, to what extent these two observations are related to each other.


Author(s):  
Fang Liu ◽  
Qian Zhao ◽  
Zhenhua Jia ◽  
Cong Song ◽  
Yali Huang ◽  
...  

Abstract Background: Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) to communicate each other and to coordinate their collective behaviors. Recently, accumulating evidence shows that host plants are able to sense and respond to bacterial AHLs. Once primed, plants are in an altered state that enables plant cells to more quickly and/or strongly respond to subsequent pathogen infection or abiotic stress. Results: In this study, we report that pretreatment with N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) confers resistance against the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (PstDC3000) in Arabidopsis. Pretreatment with 3OC8-HSL and subsequent pathogen invasion triggered an augmented burst of hydrogen peroxide, salicylic acid accumulation, and fortified expression of the pathogenesis-related genes PR1 and PR5. Upon PstDC3000 challenge, plants treated with 3OC8-HSL showed increased activities of defense-related enzymes including peroxidase, catalase, phenylalanine ammonialyase, and superoxide dismutase. In addition, the 3OC8-HSL-primed resistance to PstDC3000 in wild-type plants was impaired in plants expressing the bacterial NahG gene and in the npr1 mutant. Moreover, the expression levels of isochorismate synthases (ICS1), a critical salicylic acid biosynthesis enzyme, and two regulators of its expression, SARD1 and CBP60g, were potentiated by 3OC8-HSL pretreatment followed by pathogen inoculation. Conclusions: Our data indicate that 3OC8-HSL primes the Arabidopsis defense response upon hemibiotrophic bacterial infection and that 3OC8-HSL-primed resistance is dependent on the SA signaling pathway. These findings may help establish a novel strategy for the control of plant disease.


2019 ◽  
Author(s):  
Robert Blundell ◽  
Jennifer E. Schmidt ◽  
Alexandria Igwe ◽  
Andrea L. Cheung ◽  
Rachel L. Vannette ◽  
...  

AbstractLower insect pest populations found on long-term organic farms have largely been attributed to increased biodiversity and abundance of beneficial predators. However, potential induction of plant defenses has largely been ignored. This study aims to determine whether host plant resistance mediates decreased pest populations in organic systems, and to identify the underpinning mechanisms. We demonstrate that greater numbers of leafhoppers (Circulifer tenellus) settle on tomatoes (Solanum lycopersicum) grown using conventional management as compared to organic. Soil microbiome sequencing, chemical analysis, and transgenic approaches, coupled with multi-model inference, suggest that changes in leafhopper settling between organically and conventionally-grown tomatoes are dependent on salicylic acid accumulation in the plant, likely mediated by rhizosphere microbial communities. These results suggest that organically-managed soils and microbial communities may play an unappreciated role in reducing plant attractiveness to pests by increasing plant resistance.


Sign in / Sign up

Export Citation Format

Share Document