scholarly journals INSIGHT INTO SEISMIC REFRACTION AND ELECTRICAL RESISTIVITY TOMOGRAPHY TECHNIQUES IN SUBSURFACE INVESTIGATIONS

2019 ◽  
Vol 34 (1) ◽  
pp. 93-111 ◽  
Author(s):  
Adedibu Sunny Akingboye ◽  
Abimbola Chris Ogunyele
2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Yonatan Garkebo Doyoro ◽  
Ping-Yu Chang ◽  
Jordi Mahardika Puntu ◽  
Ding-Jiun Lin ◽  
Tran Van Huu ◽  
...  

AbstractGeophysical modelling performs to obtain subsurface structures in agreement with measured data. Freeware algorithms for geoelectrical data inversion have not been widely used in geophysical communities; however, different open-source modelling/inversion algorithms were developed in recent years. In this study, we review the structures and applications of openly Python-based inversion packages, such as pyGIMLi (Python Library for Inversion and Modelling in Geophysics), BERT (Boundless Electrical Resistivity Tomography), ResIPy (Resistivity and Induced Polarization with Python), pyres (Python wrapper for electrical resistivity modelling), and SimPEG (Simulation and Parameter Estimation in Geophysics). In addition, we examine the recovering ability of pyGIMLi, BERT, ResIPy, and SimPEG freeware through inversion of the same synthetic model forward responses. A versatile pyGIMLi freeware is highly suitable for various geophysical data inversion. The SimPEG framework is developed to allow the user to explore, experiment with, and iterate over multiple approaches to the inverse problem. In contrast, BERT, pyres, and ResIPy are exclusively designed for geoelectric data inversion. BERT and pyGIMLi codes can be easily modified for the intended applications. Both pyres and ResIPy use the same mesh designs and inversion algorithms, but pyres uses scripting language, while ResIPy uses a graphical user interface (GUI) that removes the need for text inputs. Our numerical modelling shows that all the tested inversion freeware could be effective for relatively larger targets. pyGIMLi and BERT could also obtain reasonable model resolutions and anomaly accuracies for small-sized subsurface structures. Based on the heterogeneous layered model and experimental target scenario results, the geoelectrical data inversion could be more effective in pyGIMLi, BERT, and SimPEG freeware packages. Moreover, this study can provide insight into implementing suitable inversion freeware for reproducible geophysical research, mainly for geoelectrical modelling.


2019 ◽  
Vol 24 (1) ◽  
pp. 27-38
Author(s):  
B. Butchibabu ◽  
Prosanta K. Khan ◽  
P.C. Jha

Geophysical investigations were carried out for evaluation of damage and to assess the possible causes for repeated occurrence of damage at one of the buildings constructed for oil pumping in the northern part of India. Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) techniques were adopted for studying the subsurface of the area around the building with an objective of ascertaining the cause of damage. High resolution imaging was done using both the techniques in this investigation. ERT delineated the presence of low resistivity (2 ohm-m) water filled voids below the structures and mapped different subsurface layers such as sandy soil, clay and sandstone in the study area. SRT revealed P-wave velocity ( V P ) of the subsurface medium in the range of 400–3,400 m/s. Corresponding densities and S-wave velocities ( V S ) were determined based on Gardner's and Castagna's relationships. Subsequently, the V P , V S and the modulus values were used in estimating compressibility of soil and rock strata. Results showed near surface layers were characterized by high compressibility (26.673 × 10 −5 Pa −1 ), decreases with depth. This paper presents the details of the site, techniques used in the investigation and correlation of geophysical results with lithological information, and the subsequent analysis for understanding the distress in the subsurface of the study area.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Luciana Orlando

The paper emphasizes the advantages of employing multiple data techniques—geology, GPS, surveys of cracking, boreholes, seismic refraction and electrical resistivity tomography—to image the shallow stratigraphy and hypothesize the cause of instability of an urban area. The study is focused on the joint interpretation of the crack pattern, topographic monitoring and the features of the underground, to define the area affected by instability and the direction of ground motion with the objective to advance a hypothesis on the cause of the instability of the area and to depict the main features. Borehole stratigraphies for a univocal interpretation of the lithology of electrical and seismic data and electrical resistivity tomography to constrain the interpretation of the lateral velocity variations and thickness of seismic bedrock were used. The geophysical surveys reveals to be complementary in the depicting of underground features. The study is approached at small and medium scale.


Sign in / Sign up

Export Citation Format

Share Document