Foundation Evaluation of a Repeater Installation Building using Electrical Resistivity Tomography and Seismic Refraction Tomography

2019 ◽  
Vol 24 (1) ◽  
pp. 27-38
Author(s):  
B. Butchibabu ◽  
Prosanta K. Khan ◽  
P.C. Jha

Geophysical investigations were carried out for evaluation of damage and to assess the possible causes for repeated occurrence of damage at one of the buildings constructed for oil pumping in the northern part of India. Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) techniques were adopted for studying the subsurface of the area around the building with an objective of ascertaining the cause of damage. High resolution imaging was done using both the techniques in this investigation. ERT delineated the presence of low resistivity (2 ohm-m) water filled voids below the structures and mapped different subsurface layers such as sandy soil, clay and sandstone in the study area. SRT revealed P-wave velocity ( V P ) of the subsurface medium in the range of 400–3,400 m/s. Corresponding densities and S-wave velocities ( V S ) were determined based on Gardner's and Castagna's relationships. Subsequently, the V P , V S and the modulus values were used in estimating compressibility of soil and rock strata. Results showed near surface layers were characterized by high compressibility (26.673 × 10 −5 Pa −1 ), decreases with depth. This paper presents the details of the site, techniques used in the investigation and correlation of geophysical results with lithological information, and the subsequent analysis for understanding the distress in the subsurface of the study area.

2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


Sign in / Sign up

Export Citation Format

Share Document