A Study on the Accessibility and Coverage Analysis of Stockpile Area of Quarantine Products in Response to Social Disasters

2021 ◽  
Vol 31 (6) ◽  
pp. 1-21
Author(s):  
Yunjeong Jin ◽  
Jaesung Choi
Keyword(s):  
2020 ◽  
Author(s):  
Tianyang Yan ◽  
Heta Desai ◽  
Lisa Boatner ◽  
Stephanie Yen ◽  
Jian Cao ◽  
...  

<p>We report a new cysteine chemoproteomic method, termed SP3-FAIMS chemoproteomics, which enables rapid and high coverage analysis of the human cysteinome. By combining enhanced cysteine biotinylation with SP3 sample decontamination and FAIMS online fraction, we identified in aggregate 34,225 unique cysteines found on 7,243 proteins. Showcasing the versatility of our method, integration with the isoTOP-ABPP workflow enabled the high throughput discovery of cysteines labelled by electrophilic compounds. </p>


2021 ◽  
Vol 2 ◽  
pp. 94-110
Author(s):  
Alexandros-Apostolos A. Boulogeorgos ◽  
Angeliki Alexiou

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1001
Author(s):  
Jiyoon Han ◽  
Joonhong Park

A simultaneous analysis of nucleotide changes and copy number variations (CNVs) based on exome sequencing data was demonstrated as a potential new first-tier diagnosis strategy for rare neuropsychiatric disorders. In this report, using depth-of-coverage analysis from exome sequencing data, we described variable phenotypes of epilepsy, intellectual disability (ID), and schizophrenia caused by 12p13.33–p13.32 terminal microdeletion in a Korean family. We hypothesized that CACNA1C and KDM5A genes of the six candidate genes located in this region were the best candidates for explaining epilepsy, ID, and schizophrenia and may be responsible for clinical features reported in cases with monosomy of the 12p13.33 subtelomeric region. On the background of microdeletion syndrome, which was described in clinical cases with mild, moderate, and severe neurodevelopmental manifestations as well as impairments, the clinician may determine whether the patient will end up with a more severe or milder end‐phenotype, which in turn determines disease prognosis. In our case, the 12p13.33–p13.32 terminal microdeletion may explain the variable expressivity in the same family. However, further comprehensive studies with larger cohorts focusing on careful phenotyping across the lifespan are required to clearly elucidate the possible contribution of genetic modifiers and the environmental influence on the expressivity of 12p13.33 microdeletion and associated characteristics.


Sign in / Sign up

Export Citation Format

Share Document