Regional Earthquake Likelihood Models I: First-Order Results

2013 ◽  
Vol 103 (2A) ◽  
pp. 787-798 ◽  
Author(s):  
J. D. Zechar ◽  
D. Schorlemmer ◽  
M. J. Werner ◽  
M. C. Gerstenberger ◽  
D. A. Rhoades ◽  
...  
2012 ◽  
Vol 2 (2) ◽  
pp. 10 ◽  
Author(s):  
Michael Karl Sachs ◽  
Ya-Ting Lee ◽  
Donald Turcotte ◽  
James R. Holliday ◽  
John B. Rundle

The Regional Earthquake Likelihood Models (RELM) test was the first competitive comparison of prospective earthquake forecasts. The test was carried out over 5 years from 1 January 2006 to 31 December 2010 over a region that included all of California. The test area was divided into 7682 0.1°x0.1° spatial cells. Each submitted forecast gave the predicted numbers of earthquakes <em>N<sub>emi</sub></em> larger than <em>M</em>=4.95 in 0.1 magnitude bins for each cell. In this paper we present a method that separates the forecast of the number of test earthquakes from the forecast of their locations. We first obtain the number <em>N<sub>em</sub></em> of forecast earthquakes in magnitude bin <em>m</em>. We then determine the conditional probability <em>λ<sub>emi</sub></em>=<em>N<sub>emi</sub>/</em><em>N<sub>em</sub></em> that an earthquake in magnitude bin <em>m</em> will occur in cell <em>i</em>. The summation of <em>λ<sub>emi</sub></em> over all 7682 cells is unity. A random (no skill) forecast gives equal values of <em>λ<sub>emi</sub></em> for all spatial cells and magnitude bins. The <em>skill</em> of a forecast, in terms of the location of the earthquakes, is measured by the success in assigning large values of <em>λ<sub>emi</sub></em> to the cells in which earthquakes occur and low values of <em>λ<sub>emi</sub></em> to the cells where earthquakes do not occur. Thirty-one test earthquakes occurred in 27 different combinations of spatial cells <em>i</em> and magnitude bins <em>m</em>, we had the highest value of <em>λ<sub>emi</sub></em> for that <em>mi</em> cell. We evaluate the performance of eleven submitted forecasts in two ways. First, we determine the number of <em>mi</em> cells for which the forecast <em>λ<sub>emi</sub></em> was the largest, the best forecast is the one with the highest number. Second, we determine the mean value of <em>λ<sub>emi</sub></em> for the 27 <em>mi</em> cells for each forecast. The best forecast has the highest mean value of <em>λ<sub>emi</sub></em>. The success of a forecast during the test period is dependent on the allocation of the probabilities λemi between the mi cells, since the sum over the mi cells is unity. We illustrate the forecast distributions of <em>λ<sub>emi</sub></em> and discuss their differences. We conclude that the RELM test was successful in illustrating the choices required when a forecast of the location of a future earthquake is made.


Author(s):  
Danijel Schorlemmer ◽  
◽  
J. Douglas Zechar ◽  
Maximilian J. Werner ◽  
Edward H. Field ◽  
...  

2011 ◽  
Vol 108 (40) ◽  
pp. 16533-16538 ◽  
Author(s):  
Y.-T. Lee ◽  
D. L. Turcotte ◽  
J. R. Holliday ◽  
M. K. Sachs ◽  
J. B. Rundle ◽  
...  

2014 ◽  
Vol 104 (6) ◽  
pp. 3072-3083 ◽  
Author(s):  
D. A. Rhoades ◽  
M. C. Gerstenberger ◽  
A. Christophersen ◽  
J. D. Zechar ◽  
D. Schorlemmer ◽  
...  

2010 ◽  
Vol 167 (8-9) ◽  
pp. 859-876 ◽  
Author(s):  
Danijel Schorlemmer ◽  
◽  
J. Douglas Zechar ◽  
Maximilian J. Werner ◽  
Edward H. Field ◽  
...  

2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


Author(s):  
Richard J. Spontak ◽  
Steven D. Smith ◽  
Arman Ashraf

Block copolymers are composed of sequences of dissimilar chemical moieties covalently bonded together. If the block lengths of each component are sufficiently long and the blocks are thermodynamically incompatible, these materials are capable of undergoing microphase separation, a weak first-order phase transition which results in the formation of an ordered microstructural network. Most efforts designed to elucidate the phase and configurational behavior in these copolymers have focused on the simple AB and ABA designs. Few studies have thus far targeted the perfectly-alternating multiblock (AB)n architecture. In this work, two series of neat (AB)n copolymers have been synthesized from styrene and isoprene monomers at a composition of 50 wt% polystyrene (PS). In Set I, the total molecular weight is held constant while the number of AB block pairs (n) is increased from one to four (which results in shorter blocks). Set II consists of materials in which the block lengths are held constant and n is varied again from one to four (which results in longer chains). Transmission electron microscopy (TEM) has been employed here to investigate the morphologies and phase behavior of these materials and their blends.


1991 ◽  
Vol 3 (1) ◽  
pp. 235-253 ◽  
Author(s):  
L. D. Philipp ◽  
Q. H. Nguyen ◽  
D. D. Derkacht ◽  
D. J. Lynch ◽  
A. Mahmood

Sign in / Sign up

Export Citation Format

Share Document