covalently bonded
Recently Published Documents


TOTAL DOCUMENTS

1041
(FIVE YEARS 186)

H-INDEX

70
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Stephen Goldup ◽  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler

Abstract The term chiral was introduced by Lord Kelvin over a century ago to describe objects that are distinct from their own mirror image. Chirality is relevant in many scientific areas, but particularly chemistry because different mirror image forms of a molecule famously have different biological properties. Chirality typically arises in molecules due to a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that molecular chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two molecular rings with chemically distinct faces are joined like links in a chain the resulting structure is chiral even when the rings themselves are not. We re-examined the symmetry properties of such mechanically axially chiral catenanes and in doing so identified a straightforward route to these molecules from simple building blocks. This also led to the discovery of a previously overlooked mechanical stereogenic unit that can arise when such a ring encircles a dumbbell-shaped axle to generate a rotaxane. These insights allowed us to produce the first highly enantioenriched axially chiral catenane and the same approach gave access to a molecule containing the newly identified noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.


2022 ◽  
Author(s):  
Shuai Jiang ◽  
Yi-Rong Liu ◽  
Teng Huang ◽  
Ya-Juan Feng ◽  
Chun-Yu Wang ◽  
...  

Abstract Atmospheric aerosol nucleation contributes to around half of cloud condensation nuclei globally. Despite the importance for climate, detailed nucleation mechanisms are still poorly understood. Understanding aerosol nucleation dynamics is hindered by non-reactivity of force fields and high computational costs due to rare event nature of aerosol nucleation. Developing reactive force fields for nucleation systems are even more challenging than covalently bonded materials because of wide size range and high dimensional characteristics of non-covalent hydrogen bonding bridging clusters. Here we proposes a system transferable framework to train an accurate reactive force field (FF) based on deep neural network (DNN) and further bridges the DNN-FF based molecular dynamics (MD) with cluster kinetics model based on Poisson distributions of reactive events to overcome high computational costs from direct MD. We found that previously reported acid-base formation rates tend to be underestimated several times, emphasizing acid-base nucleation observed in multiple environments should be revisited.


Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Yi Mo ◽  
Wenjian Fang ◽  
Hong Li ◽  
Junji Chen ◽  
Xiaohua Hu ◽  
...  

No licensed Shigella vaccine is presently available globally. A double-blinded, randomized, placebo-controlled, age descending phase II clinical trial of a bivalent conjugate vaccine was studied in China. The vaccine ZF0901 consisted of O-specific polysaccharides purified and detoxified from lipopolysaccharide (LPS) of S. flexneri 2a and S. sonnei and covalently bonded to tetanus toxoid. A total of 224, 310, and 434 children, consented by parents or guardians, aged 3 to 6 and 6 to 12 months and 1 to 5 years old, respectively, were injected with half or full doses, with or without adjuvant or control Hib vaccine. There were no serious adverse reactions in all recipients of ZF0901 vaccine independent of age, dosage, number of injections, or the adjuvant status. Thirty days after the last injection, ZF0901 induced robust immune responses with significantly higher levels of type-specific serum antibodies (geometric mean concentrations (GMCs) of IgG anti-LPS) against both serotypes in all age groups compared with the pre-immune or the Hib control (p < 0.0001). Here, we demonstrated that ZF0901 bivalent Shigella conjugate vaccine is safe and immunogenic in infants and young children and is likely suitable for routine immunization.


2021 ◽  
pp. 135-169
Author(s):  
Can Wang ◽  
Haiming Zhang ◽  
Lifeng Chi
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos Guerra ◽  
Sarvesh Kumar ◽  
Fernando Aguilar-Galindo ◽  
Sergio Díaz-Tendero ◽  
Ana I. Lozano ◽  
...  

AbstractSuperoxide anions colliding with benzene molecules at impact energies from 200 to 900 eV are reported for the first time to form massive complexes. With the aid of quantum chemistry calculations, we propose a mechanism in which a sudden double ionization of benzene and the subsequent electrostatic attraction between the dication and the anion form a stable covalently bonded C6H6O2+ molecule, that evolves towards the formation of benzene-diol conformers. These findings lend support to a model presenting a new high energy anion-driven chemistry as an alternative way to form complex molecules.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Viki Kumar Prasad ◽  
M. Hossein Khalilian ◽  
Alberto Otero-de-la-Roza ◽  
Gino A. DiLabio

AbstractWe present an extensive and diverse dataset of bond separation energies associated with the homolytic cleavage of covalently bonded molecules (A-B) into their corresponding radical fragments (A. and B.). Our dataset contains two different classifications of model structures referred to as “Existing” (molecules with associated experimental data) and “Hypothetical” (molecules with no associated experimental data). In total, the dataset consists of 4502 datapoints (1969 datapoints from the Existing and 2533 datapoints from the Hypothetical classes). The dataset covers 49 unique X-Y type single bonds (except H-H, H-F, and H-Cl), where X and Y are H, B, C, N, O, F, Si, P, S, and Cl atoms. All the reference data was calculated at the (RO)CBS-QB3 level of theory. The reference bond separation energies are non-relativistic ground-state energy differences and contain no zero-point energy corrections. This new dataset of bond separation energies (BSE49) is presented as a high-quality reference dataset for assessing and developing computational chemistry methods.


Author(s):  
Tomasz Poreba ◽  
Gaston Garbarino ◽  
Davide Comboni ◽  
Mohamed Mezouar

Dicaesium octaiodide is composed of layers of zigzag polyiodide units (I8 2−) intercalated with caesium cations. Each I8 2− unit is built of two triiodides bridged with one diiodine molecules. This system was subjected to compression up to 5.9 GPa under hydrostatic conditions. Pressure alters the supramolecular architecture around I8 2−, leading to bending of the triiodide units away from their energetically preferred geometry (D ∞h). Short I2...I3 − contacts compress significantly, reaching lengths typical for the covalently bonded polyiodides. Unlike in reported structures at ambient conditions, pressure-induced catenation proceeds without symmetrization of the polyiodides, pointing to a different electron-transfer mechanism. The structure is shown to be half as compressible [B0 = 12.9 (4) GPa] than the similar CsI3 structure. The high bulk modulus is associated with higher I—I connectivity and a more compact cationic net, than in CsI3. The small discontinuity in the compressibility trend around 3 GPa suggests formation of more covalent I—I bonds. The potential sources of this discontinuity and its implication on the electronic properties of Cs2I8 are discussed.


2021 ◽  
Author(s):  
Francesca Marocco Studardi ◽  
Arianna Tiozzo ◽  
Laura Rotundo ◽  
Roberto Gobetto ◽  
Carlo Nervi ◽  
...  

Carbon cloth electrode modified by covalently attaching a manganese organometallic catalyst is used as cathode for the electrochemical recuction of CO2 in methanol solutions. Six different amines are employed as co-catalyst in millimolar concentrations, which coupled to the increased solubility of CO2 in methanol enhance the formate production, switch the selectivity toward formate anion, and in the case of pentamethyldiethylentriamine (PMDETA) resulted in an impressive TONHCOO– of 2.8×104. We demonstrate that the protonated PMDETA is formed in methanol solution by simply bubbling CO2, which is the responsible for a barrierless transformation of CO2 to formate via the reduced form of the Mn catalyst covalently bonded to the electrode surface. These findings pave the way for more efficient transformation of CO2 into liquid fuel and shed light on the electrochemical mechanism


Sign in / Sign up

Export Citation Format

Share Document