scholarly journals Prospective Evaluation of Global Earthquake Forecast Models: 2 Yrs of Observations Provide Preliminary Support for Merging Smoothed Seismicity with Geodetic Strain Rates

2018 ◽  
Vol 89 (4) ◽  
pp. 1262-1271 ◽  
Author(s):  
Anne Strader ◽  
Maximilian Werner ◽  
José Bayona ◽  
Philip Maechling ◽  
Fabio Silva ◽  
...  
2021 ◽  
Author(s):  
Jose A. Bayona ◽  
William Savran ◽  
Maximilian Werner ◽  
David A. Rhoades

<p>Developing testable seismicity models is essential for robust seismic hazard assessments and to quantify the predictive skills of posited hypotheses about seismogenesis. On this premise, the Regional Earthquake Likelihood Models (RELM) group designed a joint forecasting experiment, with associated models, data and tests to evaluate earthquake predictability in California over a five-year period. Participating RELM forecast models were based on a range of geophysical datasets, including earthquake catalogs, interseismic strain rates, and geologic fault slip rates. After five years of prospective evaluation, the RELM experiment found that the smoothed seismicity (HKJ) model by Helmstetter et al. (2007) was the most informative. The diversity of competing forecast hypotheses in RELM was suitable for combining multiple models that could provide more informative earthquake forecasts than HKJ. Thus, Rhoades et al. (2014) created multiplicative hybrid models that involve the HKJ model as a baseline and one or more conjugate models. Particularly, the authors fitted two parameters for each conjugate model and an overall normalizing constant to optimize each hybrid model. Then, information gain scores per earthquake were computed using a corrected Akaike Information Criterion that penalized for the number of fitted parameters. According to retrospective analyses, some hybrid models showed significant information gains over the HKJ forecast, despite the penalty. Here, we assess in a prospective setting the predictive skills of 16 hybrids and 6 original RELM forecasts, using a suite of tests of the Collaboratory for the Study of Earthquake Predicitability (CSEP). The evaluation dataset contains 40 M≥4.95 events recorded within the California CSEP-testing region from 1 January 2011 to 31 December 2020, including the 2016 Mw 5.6, 5.6, and 5.5 Hawthorne earthquake swarm, and the Mw 6.4 foreshock and Mw 7.1 mainshock from the 2019 Ridgecrest sequence. We evaluate the consistency between the observed and the expected number, spatial, likelihood and magnitude distributions of earthquakes, and compare the performance of each forecast to that of HKJ. Our prospective test results show that none of the hybrid models are significantly more informative than the HKJ baseline forecast. These results are mainly due to the occurrence of the 2016 Hawthorne earthquake cluster, and four events from the 2019 Ridgecrest sequence in two forecast bins. These clusters of seismicity are exceptionally unlikely in all models, and insufficiently captured by the Poisson distribution that the likelihood functions of tests assume. Therefore, we are currently examining alternative likelihood functions that reduce the sensitivity of the evaluations to clustering, and that could be used to better understand whether the discrepancies between prospective and retrospective test results for multiplicative hybrid forecasts are due to limitations of the tests or the methods used to create the hybrid models. </p>


2015 ◽  
Vol 105 (5) ◽  
pp. 2538-2554 ◽  
Author(s):  
P. Bird ◽  
D. D. Jackson ◽  
Y. Y. Kagan ◽  
C. Kreemer ◽  
R. S. Stein

2019 ◽  
Vol 109 (5) ◽  
pp. 2036-2049 ◽  
Author(s):  
José Antonio Bayona Viveros ◽  
Sebastian von Specht ◽  
Anne Strader ◽  
Sebastian Hainzl ◽  
Fabrice Cotton ◽  
...  

Abstract The Seismic Hazard Inferred from Tectonics based on the Global Strain Rate Map (SHIFT_GSRM) earthquake forecast was designed to provide high‐resolution estimates of global shallow seismicity to be used in seismic hazard assessment. This model combines geodetic strain rates with global earthquake parameters to characterize long‐term rates of seismic moment and earthquake activity. Although SHIFT_GSRM properly computes seismicity rates in seismically active continental regions, it underestimates earthquake rates in subduction zones by an average factor of approximately 3. We present a complementary method to SHIFT_GSRM to more accurately forecast earthquake rates in 37 subduction segments, based on the conservation of moment principle and the use of regional interface seismicity parameters, such as subduction dip angles, corner magnitudes, and coupled seismogenic thicknesses. In seven progressive steps, we find that SHIFT_GSRM earthquake‐rate underpredictions are mainly due to the utilization of a global probability function of seismic moment release that poorly captures the great variability among subduction megathrust interfaces. Retrospective test results show that the forecast is consistent with the observations during the 1 January 1977 to 31 December 2014 period. Moreover, successful pseudoprospective evaluations for the 1 January 2015 to 31 December 2018 period demonstrate the power of the regionalized earthquake model to properly estimate subduction‐zone seismicity.


Author(s):  
Alessandro Caporali ◽  
Salvatore Barba ◽  
Michele M. C. Carafa ◽  
Roberto Devoti ◽  
Grazia Pietrantonio ◽  
...  

2017 ◽  
Vol 211 (1) ◽  
pp. 239-251 ◽  
Author(s):  
Anne Strader ◽  
Max Schneider ◽  
Danijel Schorlemmer

2017 ◽  
Vol 212 (2) ◽  
pp. 988-1009 ◽  
Author(s):  
Timothy A Middleton ◽  
Barry Parsons ◽  
Richard T Walker

Sign in / Sign up

Export Citation Format

Share Document