GEAR1: A Global Earthquake Activity Rate Model Constructed from Geodetic Strain Rates and Smoothed Seismicity

2015 ◽  
Vol 105 (5) ◽  
pp. 2538-2554 ◽  
Author(s):  
P. Bird ◽  
D. D. Jackson ◽  
Y. Y. Kagan ◽  
C. Kreemer ◽  
R. S. Stein
2019 ◽  
Vol 109 (5) ◽  
pp. 2036-2049 ◽  
Author(s):  
José Antonio Bayona Viveros ◽  
Sebastian von Specht ◽  
Anne Strader ◽  
Sebastian Hainzl ◽  
Fabrice Cotton ◽  
...  

Abstract The Seismic Hazard Inferred from Tectonics based on the Global Strain Rate Map (SHIFT_GSRM) earthquake forecast was designed to provide high‐resolution estimates of global shallow seismicity to be used in seismic hazard assessment. This model combines geodetic strain rates with global earthquake parameters to characterize long‐term rates of seismic moment and earthquake activity. Although SHIFT_GSRM properly computes seismicity rates in seismically active continental regions, it underestimates earthquake rates in subduction zones by an average factor of approximately 3. We present a complementary method to SHIFT_GSRM to more accurately forecast earthquake rates in 37 subduction segments, based on the conservation of moment principle and the use of regional interface seismicity parameters, such as subduction dip angles, corner magnitudes, and coupled seismogenic thicknesses. In seven progressive steps, we find that SHIFT_GSRM earthquake‐rate underpredictions are mainly due to the utilization of a global probability function of seismic moment release that poorly captures the great variability among subduction megathrust interfaces. Retrospective test results show that the forecast is consistent with the observations during the 1 January 1977 to 31 December 2014 period. Moreover, successful pseudoprospective evaluations for the 1 January 2015 to 31 December 2018 period demonstrate the power of the regionalized earthquake model to properly estimate subduction‐zone seismicity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
D. S. Stamps ◽  
E. Saria ◽  
C. Kreemer

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2019 ◽  
Vol 109 (6) ◽  
pp. 2240-2251 ◽  
Author(s):  
Pallabee Choudhury ◽  
Sumer Chopra ◽  
Charu Kamra ◽  
Archana Das

Abstract The intraplate Gujarat region located at the trijunction of three failed rifts, Kachchh, Narmada, and Cambay, is one of the most seismically active intraplate regions of the world. Among these three, the Cambay basin has been investigated thoroughly for petroleum. However, the basin has not been studied from a seismotectonic perspective. For the past few years, the northern part of the Cambay basin is becoming active with reasonably frequent earthquake occurrences. In the past 10 yr, ∼995 earthquakes have been recorded from the region with a maximum magnitude up to 4.2. Most of the earthquakes are in the magnitude range 1–3. Since 2009, four Global Positioning System (GPS) stations have been in operation in the vicinity of the Cambay basin, and a maximum deformation of 1.8±0.1  mm/yr has been estimated. The GPS‐derived strain rates of ∼0.02–0.03  microstrain/yr are prevalent in the region. An average strain rate of 0.02  microstrain/yr in the region can generate an earthquake of magnitude 6.4. The focal mechanisms of the earthquakes have been mostly normal with strike‐slip component and corroborated by the geodetic strain tensors. Most of the seismicity is clustered in the basement ridges, striking along pre‐existing Precambrian trends that cross the Cambay basin. Complex geodynamics have developed around the northern part of the Cambay rift because of the various movements along several faults, presence of basement ridges, and subsurface plutonic bodies in a failed rift, which are creating stresses and causing earthquakes in this part of the rift. We postulated that the highly heterogeneous subsurface structure beneath the northern part of the Cambay rift is creating additional stress, which is superimposing on the regional stress field substantially, and this mechanism is plausibly facilitating the localized extensional tectonics in the region where compression is expected.


Author(s):  
Alessandro Caporali ◽  
Salvatore Barba ◽  
Michele M. C. Carafa ◽  
Roberto Devoti ◽  
Grazia Pietrantonio ◽  
...  

2017 ◽  
Vol 212 (2) ◽  
pp. 988-1009 ◽  
Author(s):  
Timothy A Middleton ◽  
Barry Parsons ◽  
Richard T Walker

2018 ◽  
Vol 61 (3) ◽  
Author(s):  
Ibrahim Tiryakioğlu ◽  
Çağlar Özkaymak ◽  
Tamer Baybura ◽  
Hasan Sözbilir ◽  
Murat Uysal

2002 ◽  
Vol 29 (20) ◽  
pp. 39-1-39-4 ◽  
Author(s):  
Ivone Jiménez-Munt ◽  
Roberto Sabadini
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document