static stress
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 69)

H-INDEX

29
(FIVE YEARS 4)

Geology ◽  
2021 ◽  
Author(s):  
Marco Bonini

Earthquakes can trigger increased degassing in hydrogeological systems. Many of these systems return to preseismic conditions after months, but sometimes postseismic degassing lasts for years. The factors controlling such long-lasting degassing are poorly known. I explored the potential role of diverse triggering mechanisms (i.e., dynamic and static stress changes, volumetric strain) for three large earthquakes that induced postseismic degassing (the Wenchuan [China], Maule [Chile], and Gorkha [Nepal] earthquakes). The lessons from this study suggest that hydrogeological systems can respond to earthquakes in various ways, and different causal mechanisms can play a role. Persistent increased CO2 flux from hot springs has been documented after the Gorkha earthquake. These hot springs had their feeder systems dominantly unclamped, suggesting that sufficiently large normal stress changes may sustain late postseismic degassing. The results of this study are twofold: (1) they show a spatial correlation between unclamping stress and increased gas flow, and (2) they provide an explanation for protracted increased degassing.


2021 ◽  
Vol 11 (23) ◽  
pp. 11169
Author(s):  
Guangliang Yan ◽  
Qibo Yang ◽  
Fengpeng Zhang ◽  
Qiqi Hao ◽  
Xiulong Wang ◽  
...  

In situ stress is one of the most important factors affecting rock dynamic fractures during blasting excavation of deep rock mass that generally is hard rock. In this research, crater blasting experiments on hard rock under different uniaxial static stresses were conducted to investigate the initiation and propagation process of crack networks that were induced by coupled dynamic and static loads. Furthermore, the effects of anisotropic static stress fields on the initiation and propagation of crack networks during hard rock blasting, and the crack network morphological characteristics were analyzed and elucidated. The experimental results showed that the static stress field changed the process of crack network initiation and propagation during hard rock blasting, and then control the crack network morphology. Under uniaxial static stress, the crack network was elliptical with the long axis parallel to the static stress. In addition, the larger the anisotropic static stress is, the more obvious the elliptical morphology of the crack network. Moreover, the static stress lead to the delay of crack formation which indicates that the delay time during millisecond blasting excavation of deep rock mass should be adjusted appropriately according to the in situ stress. A stress-strength ratio (SSR) of 0.15 is the threshold value where static stress may have a significant effect on the initiation and propagation of a crack network. Meanwhile, the strain field prior to crack initiation during rock blasting controlled the morphological characteristics of the crack network. Finally, the mechanism of static stress affecting propagation and morphology of crack network was revealed theoretically.


2021 ◽  
Author(s):  
Marco Bonini

Figures S1 and S2 (normal stress changes produced by the Wenchuan and Maule earthquakes).<br>


2021 ◽  
Author(s):  
Marco Bonini

Figures S1 and S2 (normal stress changes produced by the Wenchuan and Maule earthquakes).<br>


2021 ◽  
Vol 4 (2) ◽  
pp. 33-41
Author(s):  
Murat Utkucu ◽  
Hatice Durmuş

It has been globally documented over different tectonic environments that Coulomb static stress changes caused by a mainshock can promote or demote stresses along the neighboring faults and thus triggers or delays following seismicity. In the present study Coulomb stress changes of the earthquakes in the Lake Van area are calculated using available data and the likely source faults. The calculated stress change maps demonstrate that the large earthquakes in the Lake Area are mostly stressed by the preceding earthquakes, suggesting earthquake rupture interactions. It is further suggested that Coulomb stress maps could be used for constraining the likely locations of the future large earthquakes and in the earthquake hazard mitigation studies.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Guang-jian Liu ◽  
Shan-lin Li ◽  
Zong-long Mu ◽  
Wen Chen ◽  
Lei-bo Song ◽  
...  

Rockburst of deep roadway was induced by the superposition of mine earthquake disturbance and high static stress exceeding the limit strength of coal-rock mass. To study the roadway impact instability characteristics caused by mine earthquake disturbance and to propose an optimized support scheme, the discrete element model of the roadway structure was established based on the 1305 working face of the Zhaolou Coal Mine. The influence of mine earthquake amplitude and hypocenter location on the roadway was analyzed. The mesocrack evolution characteristics of the roadway were simulated and reproduced. Characteristics of stress field, crack field, displacement field, and energy field of the disturbed roadway with different support schemes were studied. The results showed that the greater the amplitude of the mine earthquake was, the severer the roadway impact failure was. The upper and left hypocenters had a significant influence on the roadway. The superposition of the high static stress and the dynamic stress due to the far-field mine earthquake resulted in the impact instability of coal-rock mass around the roadway, causing severe roof subsidence as well as rib and bottom heave. The evolution of tensile cracks caused the severe impact failure of roadway from a mesoscopic perspective. Using the flexible support to reinforce the roadway retarded the stress decline in roof and rib, improved the self-stability, reduced the number of near-field cracks, and decreased the displacement. Meanwhile, it allowed the roof and rib deformation, which was conducive to releasing elastic energy in surrounding rocks and reducing mine earthquake energy. The cracks and deformation in the floor were controlled by using the floor bolt. The optimal support scheme for a roadway to resist mine earthquake disturbance was proposed: “bolt-cable-mesh-steel strip-π-beam + floor bolt.” The research results have a specific guiding significance for the support of the coal mine roadway.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yoshihisa Iio ◽  
Satoshi Matsumoto ◽  
Yusuke Yamashita ◽  
Shin’ichi Sakai ◽  
Kazuhide Tomisaka ◽  
...  

AbstractAfter a large earthquake, many small earthquakes, called aftershocks, ensue. Additional large earthquakes typically do not occur, despite the fact that the large static stress near the edges of the fault is expected to trigger further large earthquakes at these locations. Here we analyse ~10,000 highly accurate focal mechanism solutions of aftershocks of the 2016 Mw 6.2 Central Tottori earthquake in Japan. We determine the location of the horizontal edges of the mainshock fault relative to the aftershock hypocentres, with an accuracy of approximately 200 m. We find that aftershocks rarely occur near the horizontal edges and extensions of the fault. We propose that the mainshock rupture was arrested within areas characterised by substantial stress relaxation prior to the main earthquake. This stress relaxation along fault edges could explain why mainshocks are rarely followed by further large earthquakes.


Sign in / Sign up

Export Citation Format

Share Document