Vertical soil-structure interaction effects

1979 ◽  
Vol 69 (1) ◽  
pp. 221-236
Author(s):  
R. R. Little ◽  
D. D. Raftopoulos

abstract An analytical expression describing the three-dimensional vertical soil-structure interaction effects is developed using Laplace and Hankel transformation techniques. Utilizing these transformation techniques and normal mode theory of vibration, an N-mass structural model is coupled to an elastic half-space representing the earth. The resulting interaction equation is solved by numerical iteration techniques for a model of a nuclear power plant subjected to actual earthquake ground excitation. The effects of the soil-structure interaction are evaluated by comparing free-field acceleration spectrum response curves with similar curves determined from the foundation motion. These effects are found to be significant for structures typical of modern nuclear power plants subjected to seismic ground motions.

Author(s):  
Samer El-Bahey ◽  
Yasser Alzeni

In recent years, the nuclear industry and the Nuclear Regulatory Commission (NRC) have made a tremendous effort to assess the safety of nuclear power plants as advances in seismology have led to the perception that the potential earthquake hazard in the United States may be higher than originally assumed. The Seismic Probabilistic Risk Assessment (S-PRA) is a systematic approach used in the nuclear power plants in the U.S. to realistically quantify the seismic risk as by performing an S-PRA, the dominant contributors to seismic risk and core damage can be identified. The assessment of component fragility is a crucial task in the S-PRA and because of the conservatism in the design process imposed by stringent codes and regulations for safety related structures, structures and safety related items are capable of withstanding earthquakes larger than the Safe Shutdown Earthquake (SSE). One major aspect of conservatism in the design is neglecting the effect of Soil-Structure-Interaction (SSI), from which conservative estimates of In-Structure Response Spectra (ISRS) are calculated resulting in conservative seismic demands for plant equipment. In this paper, a typical Reactor Building is chosen for a case study by discretizing the building into a lumped mass stick model (LMSM) taking into account model eccentricities and concrete cracking for higher demand. The model is first analyzed for a fixed base condition using the free field ground motion imposed at the foundation level from which ISRS are calculated at different elevations. Computations taking into account the SSI effects are then performed using the subtraction method accounting for inertial interactions by using frequency dependent foundation impedance functions depicting the flexibility of the foundation as well as the damping associated with foundation-soil interaction. Kinematic interactions are also taken into account in the SSI analysis by using frequency dependent transfer functions relating the free-field motion to the motion that would occur at the foundation level as the presence of foundation elements in soil causes foundation motions to deviate from free-field motions as a result of ground motion incoherence and foundation embedment. Comparing the results of the seismic response analyses, the effects of the SSI is quantified on the overall seismic risk and the SSI margin is calculated. A family of realistic seismic fragility curves of the structure are then developed using common industry safety factors (capacity, ductility, response, and strength factors), and also variability estimates for randomness and uncertainty. Realistic fragility estimates for structures directly enhances the component fragilities from which enhanced values of Core Damage Frequency (CDF) and Large Energy Release Frequency (LERF) are quantified as a final S-PRA deliverable.


Sign in / Sign up

Export Citation Format

Share Document