Microearthquakes at Yucca Mountain, Nevada

1992 ◽  
Vol 82 (1) ◽  
pp. 164-174
Author(s):  
James N. Brune ◽  
Walter Nicks ◽  
Arturo Aburto

Abstract We operated a microearthquake array in the neighborhood of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The array consists of four high-gain (up to 34 million), narrow band (25 Hz) telemetered stations. Based on approximate magnitude calibration of the array we expect during quiet periods, for distances less than 15 km, complete recording of events at Yucca Mt. for M ≧ −1. We have operated the four stations for 12-hour periods overnight between August and October 1990 and intermittently afterward, until April 1991, when we began more or less continuous operation. The pattern of microearthquake activity confirms the existence of a zone of seismic quiescence in the vicinity of proposed repository. We recorded only about 10 events with S-P times of less than 3 sec (D < 24 km). Most events had S-P times between 3 and 6.5 sec, consistent with the higher seismic activity at distances between 24 and 52 km observed by Rogers et al. (1987) and Gomberg (1991). Oliver et al. (1966) found, contrary to what has been observed by us for Yucca Mountain, that in seismically active areas most of the events had S-P times of less than 3 sec. We confirmed this expectation for four microearthquake stations near Mammoth Lakes, where we observed microearthquake rates of over 100 per day, most with S-P times of less than 3 sec. Extrapolation of seismicity data from the Southern Great Basin Seismic Network confirms the low microearthquake activity in the immediate vicinity of Yucca Mountain.

2004 ◽  
Vol 824 ◽  
Author(s):  
Lietai Yang ◽  
Miriam R. Juckett ◽  
Roberto T. Pabalan

AbstractThe electrical conductance or conductivity of three salt mixtures, Na-K-Cl-NO3, Ca-K-Cl and Ca-Na-Cl, were measured at 25, 50 and 70°C [77, 122, and 158 °F] as a function of relative humidity (RH). Mutual deliquescence and efflorescence RH (MDRH and MERH) values were determined based on the conductivity measurements. It was found that the conductivity of the three salt mixtures started to increase at RH values that are approximately 40 % of their MDRH and increased by 1to 2 orders of magnitude just before reaching the MDRH. At the MDRH, a significant increase in conductivity was observed. The MDRH and MERH for the Ca-K-Cl and Ca-Na-Cl mixtures were found to be approximately 15 % in the temperature range of 50 to 70 °C [122 to 158 °F]. The MDRH and MERH for the Na-K-Cl-NO3system were found to be approximately 54 % at 50 °C [122 °F] and decreased significantly with an increase in temperature.


Sign in / Sign up

Export Citation Format

Share Document