volcanic hazard
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 67)

H-INDEX

31
(FIVE YEARS 3)

Volcanica ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 325-343
Author(s):  
Elisabeth Gallant ◽  
Lawrence Cole ◽  
Charles Connor ◽  
Amy Donovan ◽  
Danielle Molisee ◽  
...  

Vent opening hazard models are routinely used as inputs for assessing distal volcanic hazards (lava flows, tephra fallout) in distributed volcanic fields. These vent opening hazard models have traditionally relied on the location of mapped vents; seldom have they taken into account how vents are linked in space and time. We show that inputs needed to appropriately model distal hazards are fundamentally different than thoses required to model near-vent hazards (ground deformation). We provide a computational model to obtain more appropriate eruptive source parameters (ESPs) for distal volcanic hazard sources and show the utility of our code through three examples. The code's strength is that it links events based on the spatio-temporal relationships of vents through heirarchical clustering. The development of the code and its strenghts and weaknesses are discussed. This work challenges previous ideas about ESPs and we hope this work leads to further improvement in hazard assessment methods.


2021 ◽  
Author(s):  
Jonas Biren ◽  
Lionel Cosson ◽  
Leire del Campo ◽  
Cécile Genevois ◽  
Emmanuel Veron ◽  
...  

2021 ◽  
Vol 946 (1) ◽  
pp. 012027
Author(s):  
D N Kozlov

Abstract This paper presents generalized modern data on the location, morphometry, and genesis of the largest lake basins of the Kuril Islands, obtained in a series of expeditions of the laboratory of volcanology and volcanic hazard of the Institute of Marine Geology and Geophysics FEB RAS in 2005–2020. The data is supplemented with modern geoinformation open access resources. A sample of the largest of 1099 Kuril lakes has been made according to the areal criterion, thus, 20 objects have been included in the list of studied water bodies, which are represented by 7 volcanic and 13 lagoon lakes. The considered lakes are clearly divided according to genesis, area and height of the mirror, maximum depth, as well as the ratio of the main morphometric characteristics. This information is part of a database currently being created on the largest lakes in the region.


2021 ◽  
Vol 9 ◽  
Author(s):  
Caroline Martel ◽  
Michel Pichavant ◽  
Hélène Balcone-Boissard ◽  
Georges Boudon

A prerequisite in refining volcanic hazard at explosive volcanoes is a better quantification of the timescales of the syn-eruptive processes, such as magma degassing and crystallization prior to eruption. To this aim, new data on the matrices (microlites, residual glasses, and bubbles) of pumice, scoria, and dense clasts erupted during the AD 1530 andesitic eruption of La Soufrière of Guadeloupe are combined with published data from phase-equilibrium and kinetic experiments, in order to estimate pressures of microlite crystallization and magma ascent rates. From the timescale data, we infer that the AD 1530 eruption started with phreatomagmatic explosions tapping magmas that ascended during about 1 month (decompression rate of ∼50 Pa/s) from the coldest parts of the reservoir (∼825°C and a 74 wt% SiO2 melt). These magmas continuously crystallized microlites (∼25 vol% plagioclase, orthopyroxene, clinopyroxene, magnetite, quartz, and apatite), but did not outgas likely due to sealed conduit margins. The flank collapse (preexisting “cold” edifice) that followed the phreatomagmatic phase triggered a sub-Plinian eruption that progressively tapped the hotter main reservoir (∼875°C and 71 wt% SiO2 interstitial melt), emitting banded and homogeneous pumice. The banded pumice did not significantly outgas and mostly lack decompression-induced microlites, suggesting short ascent durations of the order of 0.5–1 day (decompression rates of 1,400–4,000 Pa/s). The following Strombolian phase emitted dark scoria that did not significantly outgas and only crystallized rare microlites, suggesting ascent duration of the order of 2 days (decompression rates of ∼550 Pa/s). The terminal lava dome growth involved fully outgassed magmas ascended during more than 1 month, giving time for microlite crystallization (∼40 vol% plagioclase, orthopyroxene, clinopyroxene, magnetite, and cristobalite). The detection of any shallow new magmatic intrusion is crucial, since it can trigger a sequence of conduit processes leading to an eruption marked by a succession of different and disastrous eruptive styles, following a scenario similar to the AD 1530 eruption. Overall, we provide a combined approach of petrological, geochemical, and experimental data that may be used to infer ascent conditions and rates at other volcanic systems.


2021 ◽  
Vol 21 (11) ◽  
pp. 3509-3517
Author(s):  
Warner Marzocchi ◽  
Jacopo Selva ◽  
Thomas H. Jordan

Abstract. The main purpose of this article is to emphasize the importance of clarifying the probabilistic framework adopted for volcanic hazard and eruption forecasting. Eruption forecasting and volcanic hazard analysis seek to quantify the deep uncertainties that pervade the modeling of pre-, sin-, and post-eruptive processes. These uncertainties can be differentiated into three fundamental types: (1) the natural variability of volcanic systems, usually represented as stochastic processes with parameterized distributions (aleatory variability); (2) the uncertainty in our knowledge of how volcanic systems operate and evolve, often represented as subjective probabilities based on expert opinion (epistemic uncertainty); and (3) the possibility that our forecasts are wrong owing to behaviors of volcanic processes about which we are completely ignorant and, hence, cannot quantify in terms of probabilities (ontological error). Here we put forward a probabilistic framework for hazard analysis recently proposed by Marzocchi and Jordan (2014), which unifies the treatment of all three types of uncertainty. Within this framework, an eruption forecasting or a volcanic hazard model is said to be complete only if it (a) fully characterizes the epistemic uncertainties in the model's representation of aleatory variability and (b) can be unconditionally tested (in principle) against observations to identify ontological errors. Unconditional testability, which is the key to model validation, hinges on an experimental concept that characterizes hazard events in terms of exchangeable data sequences with well-defined frequencies. We illustrate the application of this unified probabilistic framework by describing experimental concepts for the forecasting of tephra fall from Campi Flegrei. Eventually, this example may serve as a guide for the application of the same probabilistic framework to other natural hazards.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Audrey Michaud-Dubuy ◽  
Guillaume Carazzo ◽  
Edouard Kaminski

AbstractMount Pelée (Martinique) is one of the most active volcanoes in the Lesser Antilles arc with more than 34 magmatic events in the last 24,000 years, including the deadliest eruption of the 20th century. The current volcanic hazard map used in the civil security plan puts the emphasis on the volcanic hazard close to the volcano. This map is however based on an incomplete eruptive history and does not take into account the variability of the expected source conditions (mass eruption rate, total erupted mass, and grain-size distribution) or the wind effect on ash dispersal. We propose here to refine the volcanic hazard map for tephra fallout by using the 2-D model of ash dispersal HAZMAP. We first simulate the maximum expected eruptive scenario at Mount Pelée (i.e., the P3 eruption) using a seasonal wind profile. Building upon the good agreement with field data, we compute probability maps based on this maximum expected scenario, which show that tephra fallout hazard could threaten not only areas close to the volcano but also the southern part of Martinique. We then use a comprehensive approach based on 16 eruptive scenarios that include new field constraints obtained in the recent years on the past Plinian eruptions of Mount Pelée volcano. Each eruptive scenario considers different values of total erupted mass and mass eruption rate, and is characterized by a given probability of occurrence estimated from the refined eruptive history of the volcano. The 1979-2019 meteorological ERA-5 database is used to further take into account the daily variability of winds. These new probability maps show that the area of probable total destruction is wider when considering the 16 scenarios compared to the maximum expected scenario. The southern part of Martinique, although less threatened than when considering the maximum expected scenario, would still be impacted both by tephra fallout and by its high dependence on the water and electrical network carried from the northern part of the island. Finally, we show that key infrastructures in Martinique (such as the international airport) have a non-negligible probability of being impacted by a future Plinian eruption of the Mount Pelée. These results provide strong arguments for and will support significant and timely reconceiving of the emergency procedures as the local authorities have now placed Mount Pelée volcano on alert level yellow (vigilance) based on increased seismicity and tremor-type signals.


Volcanica ◽  
2021 ◽  
Vol 4 (S1) ◽  
pp. 113-139
Author(s):  
Diego Gómez ◽  
Cristian Mauricio López Vélez ◽  
Maria Luisa Monsalve Bustamante ◽  
Adriana del Pilar Agudelo Restrepo ◽  
Gloria Patricia Cortés Jiménez ◽  
...  

The Servicio Geológico Colombiano (SGC) was created in 1916 and has been dedicated to the research and monitoring of active volcanoes in the country since the disaster resulting from the eruption of Nevado del Ruíz Volcano in 1985, where more than 25000 people died due to lahars. Today the SGC has three Volcanological and Seismological Observatories in the cities of Manizales (SGC-OVSM), Popayán (SGC-OVSPop), and Pasto (SGC-OVSP), from where 23 active volcanoes are monitored. The three observatories manage an instrumental network of about 740 stations (permanent and portable) as well as signal repeaters, and cover the disciplines of seismology, geodesy, geochemistry, and potential field, amongst others. Volcanic hazard assessment is also carried out by the SGC, producing hazard maps and reports. These tasks are complemented by programs for promoting geoscience knowledge transfer to the public, developed through different strategies. Although at this time, data derived from volcanic monitoring are not available online, the SGC is analysing this need, for implementation in the near future. El Servicio Geológico Colombiano (SGC) fue creado en 1916, y se ha dedicado a la investigación y monitoreo de los volcanes activos en el país desde el desastre resultante de la erupción del volcán Nevado del Ruíz en 1985, donde más de 25000 personas murieron debido a la ocurrencia de lahares. Hoy en día, el SGC tiene tres Observatorios Vulcanológicos y Sismológicos en las ciudades de Manizales (SGC-OVSM), Popayán (SGC-OVSPop) y Pasto (SGC-OVSP), desde donde se monitorean 23 volcanes activos. Los tres observatorios manejan una red instrumental de aproximadamente 740 estaciones (permanentes y portátiles), como también repetidoras de señal, y cubren las disciplinas de sismología, geodesia, geoquímica y campos de potencial, entre otras. La evaluación de la amenaza volcánica también es realizada por el SGC, produciendo mapas e informes. Estas tareas se complementan con programas para promover transferencia de conocimientos geocientíficos al público, desarrollados a través de diferentes estrategias. Aunque en este momento los datos derivados del monitoreo volcánico no están disponibles en línea, el SGC está analizando esta necesidad para su implementación en un futuro cercano.


Sign in / Sign up

Export Citation Format

Share Document