scholarly journals Source study of the 1906 San Francisco earthquake

1993 ◽  
Vol 83 (4) ◽  
pp. 981-1019 ◽  
Author(s):  
David J. Wald ◽  
Hiroo Kanamori ◽  
Donald V. Helmberger ◽  
Thomas H. Heaton

Abstract All quality teleseismic recordings of the great 1906 San Francisco earthquake archived in the 1908 Carnegie Report by the State Earthquake Investigation Commission were scanned and digitized. First order results were obtained by comparing complexity and amplitudes of teleseismic waveforms from the 1906 earthquake with well calibrated, similarly located, more recent earthquakes (1979 Coyote Lake, 1984 Morgan Hill, and 1989 Loma Prieta earthquakes) at nearly co-located modern stations. Peak amplitude ratios for calibration events indicated that a localized moment release of about 1 to 1.5 × 1027 dyne-cm was responsible for producing the peak the teleseismic body wave arrivals. At longer periods (50 to 80 sec), we found spectral amplitude ratios of the surface waves require a total moment release between 4 and 6 × 1027 dyne-cm for the 1906 earthquake, comparable to previous geodetic and surface wave estimates (Thatcher, 1975). We then made a more detailed source analysis using Morgan Hill S body waves as empirical Green's Functions in a finite fault subevent summation. The Morgan Hill earthquake was deemed most appropriate for this purpose as its mechanism is that of the 1906 earthquake in the central portion of the rupture. From forward and inverse empirical summations of Morgan Hill Green's functions, we obtained a good fit to the best quality teleseismic waveforms with a relatively simple source model having two regions of localized strong radiation separated spatially by about 110 km. Assuming the 1906 epicenter determined by Bolt (1968), this corresponds with a large asperity (on the order of the Loma Prieta earthquake) in the Golden Gate/San Francisco region and one about three times larger located northwest along strike between Point Reyes and Fort Ross. This model implies that much of the 1906 rupture zone may have occurred with relatively little 10 to 20 sec radiation. Consideration of the amplitude and frequency content of the 1906 teleseismic data allowed us to estimate the scale length of the largest asperity to be less than about 40 km. With rough constraints on the largest asperity (size and magnitude) we produced a suite of estimated synthetic ground velocities assuming a slip distribution similar to that of the Loma Prieta earthquake but with three times as much slip. For purposes of comparison with the recent, abundant Loma Prieta strong motion data set, we “moved” the largest 1906 asperity into Loma Prieta region. Peak ground velocity amplitudes are substantially greater than those recorded during the Loma Prieta earthquake, and are comparable to those predicted by the attenuation relationship of Joyner and Boore (1988) for a magnitude MW = 7.7 earthquake.

1992 ◽  
Vol 82 (2) ◽  
pp. 603-641 ◽  
Author(s):  
Roger D. Borcherdt ◽  
Gary Glassmoyer

Abstract Strong ground motions recorded at 34 sites in the San Francisco Bay region from the Loma Prieta earthquake show marked variations in characteristics dependent on crustal structure and local geological conditions. Peak horizontal acceleration and velocity inferred for sites underlain by “rock” generally occur on the transverse component of motion. They are consistently greater with lower attenuation rates than the corresponding mean value predicted by empirical curves based on previous strong-motion data. Theoretical amplitude distributions and synthetic seismograms calculated for 10-layer models suggest that “bedrock” motions were elevated due in part to the wide-angle reflection of S energy from the base of a relatively thin (25 km) continental crust in the region. Characteristics of geologic and geotechnical units as currently mapped for the San Francisco Bay region show that average ratios of peak horizontal acceleration, velocity and displacement increase with decreasing mean shear-wave velocity. Ratios of peak acceleration for sites on “soil” (alluvium, fill/Bay mud) are statistically larger than those for sites on “hard rock” (sandstone, shale, Franciscan Complex). Spectral ratios establish the existence of predominant site periods with peak amplifications near 15 for potentially damaging levels of ground motion at some sites underlain by alluvium and fill/bay mud. Average spectral amplifications inferred for vertical and the mean horizontal motion are, respectively, (1,1) for sites on the Franciscan Complex (KJf), (1.4, 1.5) for sites on Mesozoic and Tertiary rocks (TMzs), (2.1, 2.0) for sites on the Santa Clara Formation (QTs), (2.3, 2.9) for sites on alluvium (Qal), and (2.1, 4.0) for sites on fill/Bay mud (Qaf/Qhbm). These mean values are not statistically different at the 5% significance level from those inferred from previous low-strain data. Analyses suggest that soil amplification and reflected crustal shear energy were major contributors to levels of ground motion sufficient to cause damage to vulnerable structures at distances near 100 km in the cities of San Francisco and Oakland.


Author(s):  
Tianshi Liu ◽  
Haiming Zhang

The cross-correlations of ambient noise or earthquake codas are massively used in seismic tomography to measure the dispersion curves of surface waves and the travel times of body waves. Such measurements are based on the assumption that these kinematic parameters in the cross-correlations of noise coincide with those in Green's functions. However, the relation between the cross-correlations of noise and Green's functions deserves to be studied more precisely. In this paper, we use the asymptotic analysis to study the dispersion relations of surface waves and the travel times of body waves, and come to the conclusion that for the spherically symmetric Earth model, when the distribution of noise sources is laterally uniform, the dispersion relations of surface waves and the travel times of SH body-wave phases in noise correlations should be exactly the same as those in Green's functions.


Author(s):  
Peter Marks

This report has been modified from one presented to the Wellington City Council and sets out observations and conclusions gained from a visit to San Francisco and the area affected by the Loma Prieta Earthquake which struck the San Francisco Bay area on 17 October 1989. I visited the area from 29 November to 8 December 1989. The earthquake occurred at 5.04pm local time and was measured at 7.1 on the Richter scale. It was located 16km NE of Santa Cruz and 30km south of San Jose in the Santa Cruz mountains, 100 km south of San Francisco City. Sixty two people were killed, 994 homes destroyed with 18,000 not occupiable immediately after the earthquake. 155 businesses were destroyed and 2,500 businesses closed temporarily. Cost of damage is estimated at between 6.5 and 10 billion US dollars. San Francisco City suffered a major visitor decline after the earthquake. I attended as one of three members of the New Zealand National Society for Earthquake Engineering "Follow Up" Reconnaissance team for the purpose of establishing what damage had occurred to sewer and stormwater systems, water supply systems and gas utilities. My visit was funded by the Wellington City Council and was mostly devoted to study of sewer and stormwater systems.


Sign in / Sign up

Export Citation Format

Share Document