scholarly journals Transcutaneous Vagus Nerve Stimulation

2011 ◽  
Vol 6 (4) ◽  
pp. 254 ◽  
Author(s):  
Jens Ellrich ◽  

Invasive vagus nerve stimulation (VNS) is an approved treatment for drug-resistant epilepsy. Besides its recognised clinical efficacy, there are major drawbacks, such as invasiveness and a great many side effects. Therefore there is a medical demand for transcutaneous VNS (t-VNS®), which combines selective, non-invasive access to vagus nerve afferents with a low risk profile. Both treatments excite thick myelinated fibres of vagus nerve branches that project to the nucleus of the solitary tract in the brainstem. Preclinical data emphasise the equivalent anticonvulsive effects of both methods. Based upon the common mode of action and the first clinical data, the t-VNS device received Conformité Européenne (CE) approval. Besides the approved intended use for drug-resistant epilepsy and depression, a future clinical trial will address the efficacy of t-VNS in chronic pain.

2019 ◽  
Vol 20 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Laura Pérez-Carbonell ◽  
Howard Faulkner ◽  
Sean Higgins ◽  
Michalis Koutroumanidis ◽  
Guy Leschziner

Vagus nerve stimulation (VNS) is a neuromodulatory therapeutic option for drug-resistant epilepsy. In randomised controlled trials, VNS implantation has resulted in over 50% reduction in seizure frequency in 26%–40% of patients within 1 year. Long-term uncontrolled studies suggest better responses to VNS over time; however, the assessment of other potential predictive factors has led to contradictory results. Although initially designed for managing focal seizures, its use has been extended to other forms of drug-resistant epilepsy. In this review, we discuss the evidence supporting the use of VNS, its impact on seizure frequency and quality of life, and common adverse effects of this therapy. We also include practical guidance for the approach to and the management of patients with VNS in situ.


2020 ◽  
Vol 8 (3) ◽  
pp. 138-148
Author(s):  
Xiaoya Qin

Vagus nerve stimulation (VNS) is a neuromodulation therapy increasingly used for treating drug-resistant epilepsy. However, it remains to be determined which patients are best suited for the treatment, and it is difficult to predict the therapeutic effect before the implantation. Mutations in some genes could lead to epilepsy. Here we report two cases of pediatric patients with drug-resistant epilepsy treated by VNS therapy: Patient 1 with ARX mutation achieved good outcomes; Patient 2 with the CDKL5 mutation did not show improvement. Additionally, the therapeutic impact of VNS on brain networks was investigated, hoping to provide some empirical evidence for a better understanding of the mechanism of VNS treatment.


Sign in / Sign up

Export Citation Format

Share Document