scholarly journals Maximal Coupling Procedure and Stability of Continuous-Time Markov Chains

Author(s):  
Mokaedi V. Lekgari

In this study we first investigate the stability of subsampled discrete Markov chains through the use of the maximal coupling procedure. This is an extension of the available results on Markov chains and is realized through the analysis of the subsampled chain ΦΤn, where {Τn, nєZ+}is an increasing sequence of random stopping times. Then the similar results are realized for the stability of countable-state Continuous-time Markov processes by employing the skeleton-chain method.

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 253 ◽  
Author(s):  
Alexander Zeifman ◽  
Victor Korolev ◽  
Yacov Satin

This paper is largely a review. It considers two main methods used to study stability and to obtain appropriate quantitative estimates of perturbations of (inhomogeneous) Markov chains with continuous time and a finite or countable state space. An approach is described to the construction of perturbation estimates for the main five classes of such chains associated with queuing models. Several specific models are considered for which the limit characteristics and perturbation bounds for admissible “perturbed” processes are calculated.


1989 ◽  
Vol 26 (3) ◽  
pp. 643-648 ◽  
Author(s):  
A. I. Zeifman

We consider a non-homogeneous continuous-time Markov chain X(t) with countable state space. Definitions of uniform and strong quasi-ergodicity are introduced. The forward Kolmogorov system for X(t) is considered as a differential equation in the space of sequences l1. Sufficient conditions for uniform quasi-ergodicity are deduced from this equation. We consider conditions of uniform and strong ergodicity in the case of proportional intensities.


2002 ◽  
Vol 39 (01) ◽  
pp. 197-212 ◽  
Author(s):  
F. Javier López ◽  
Gerardo Sanz

Let (X t ) and (Y t ) be continuous-time Markov chains with countable state spaces E and F and let K be an arbitrary subset of E x F. We give necessary and sufficient conditions on the transition rates of (X t ) and (Y t ) for the existence of a coupling which stays in K. We also show that when such a coupling exists, it can be chosen to be Markovian and give a way to construct it. In the case E=F and K ⊆ E x E, we see how the problem of construction of the coupling can be simplified. We give some examples of use and application of our results, including a new concept of lumpability in Markov chains.


1975 ◽  
Vol 12 (S1) ◽  
pp. 325-345 ◽  
Author(s):  
David G. Kendall

After a general review of symmetric reversibility for countable-state continuous-time Markov chains the author shows that the birth-death-and-immigration process is symmetrically reversible and further that it remains so even when the description of the present state is refined to include a list of the sizes of all ‘families’ alive at the epoch in question. This result can be useful in genealogy because the operational direction of time there is the negative one. In view of the symmetric reversibility, some of the questions which face the genealogist can be answered without further calculation by quoting known results for the process with the usual (‘forward’ instead of ‘backward’) direction of time.Further topics discussed include social mobility matrices, surname statistics, and Colin Rogers' ‘problem of the Spruces’.


2002 ◽  
Vol 39 (4) ◽  
pp. 901-904 ◽  
Author(s):  
P. K. Pollett ◽  
V. T. Stefanov

This note presents a method of evaluating the distribution of a path integral for Markov chains on a countable state space.


1990 ◽  
Vol 22 (1) ◽  
pp. 111-128 ◽  
Author(s):  
P. K. Pollett ◽  
A. J. Roberts

We use the notion of an invariant manifold to describe the long-term behaviour of absorbing continuous-time Markov processes with a denumerable infinity of states. We show that there exists an invariant manifold for the forward differential equations and we are able to describe the evolution of the state probabilities on this manifold. Our approach gives rise to a new method for calculating conditional limiting distributions, one which is also appropriate for dealing with processes whose transition probabilities satisfy a system of non-linear differential equations.


2002 ◽  
Vol 39 (1) ◽  
pp. 197-212 ◽  
Author(s):  
F. Javier López ◽  
Gerardo Sanz

Let (Xt) and (Yt) be continuous-time Markov chains with countable state spaces E and F and let K be an arbitrary subset of E x F. We give necessary and sufficient conditions on the transition rates of (Xt) and (Yt) for the existence of a coupling which stays in K. We also show that when such a coupling exists, it can be chosen to be Markovian and give a way to construct it. In the case E=F and K ⊆ E x E, we see how the problem of construction of the coupling can be simplified. We give some examples of use and application of our results, including a new concept of lumpability in Markov chains.


1990 ◽  
Vol 22 (01) ◽  
pp. 111-128 ◽  
Author(s):  
P. K. Pollett ◽  
A. J. Roberts

We use the notion of an invariant manifold to describe the long-term behaviour of absorbing continuous-time Markov processes with a denumerable infinity of states. We show that there exists an invariant manifold for the forward differential equations and we are able to describe the evolution of the state probabilities on this manifold. Our approach gives rise to a new method for calculating conditional limiting distributions, one which is also appropriate for dealing with processes whose transition probabilities satisfy a system of non-linear differential equations.


Sign in / Sign up

Export Citation Format

Share Document