scholarly journals Performance Analysis of Traffic Congestion Using Designated Neural Network Training Algorithms

Author(s):  
Ituabhor Odesanya ◽  
Joseph Femi Odesanya

A lot of neural network training algorithms on prediction exist and these algorithms are being used by researchers to solve evaluation, forecasting, clustering, function approximation etc. problems in traffic volume congestion. This study is aimed at analysing the performance of traffic congestion using some designated neural network training algorithms on traffic flow in some selected corridors within Akure, Ondo state, Nigeria. The selected corridors were Oba Adesida road, Oyemekun road and Oke Ijebu road all in Akure. The traffic flow data were collected manually with the help of field observers who monitored and record traffic movement along the corridors. To accomplish this, three common training algorithms were selected to train the traffic flow data. The data were trained using Bayesian Regularization (BR), Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM) training algorithms. The outputs/performances of these training functions were evaluated by using the Mean Square Error (MSE) and Coefficient of Regression (R) to find the best training algorithms. The results show that, the Bayesian regularization algorithm, performs better with MSE of 2.37e-13 and R of 0.9999 than SCG and LM algorithms.

2010 ◽  
Vol 36 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Abhishek Pandey ◽  
J. K. Srivastava ◽  
N. S. Rajput ◽  
R. Prasad

Transport ◽  
2013 ◽  
Vol 30 (4) ◽  
pp. 397-405 ◽  
Author(s):  
Kranti Kumar ◽  
Manoranjan Parida ◽  
Vinod Kumar Katiyar

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea to avoid traffic instabilities and to homogenize traffic flow in such a way that risk of accidents is minimized and traffic flow is maximized. There is a need to predict traffic flow data for advanced traffic management and traffic information systems, which aim to influence traveller behaviour, reducing traffic congestion and improving mobility. This study applies Artificial Neural Network for short term prediction of traffic volume using past traffic data. Besides traffic volume, speed and density, the model incorporates both time and the day of the week as input variables. Model has been validated using actual rural highway traffic flow data collected through field studies. Artificial Neural Network has produced good results in this study even though speeds of each category of vehicles were considered separately as input variables.


Sign in / Sign up

Export Citation Format

Share Document