traffic volume
Recently Published Documents


TOTAL DOCUMENTS

1012
(FIVE YEARS 381)

H-INDEX

38
(FIVE YEARS 7)

2022 ◽  
Vol 13 (1) ◽  
pp. 1-21
Author(s):  
Hui Luo ◽  
Zhifeng Bao ◽  
Gao Cong ◽  
J. Shane Culpepper ◽  
Nguyen Lu Dang Khoa

Traffic bottlenecks are a set of road segments that have an unacceptable level of traffic caused by a poor balance between road capacity and traffic volume. A huge volume of trajectory data which captures realtime traffic conditions in road networks provides promising new opportunities to identify the traffic bottlenecks. In this paper, we define this problem as trajectory-driven traffic bottleneck identification : Given a road network R , a trajectory database T , find a representative set of seed edges of size K of traffic bottlenecks that influence the highest number of road segments not in the seed set. We show that this problem is NP-hard and propose a framework to find the traffic bottlenecks as follows. First, a traffic spread model is defined which represents changes in traffic volume for each road segment over time. Then, the traffic diffusion probability between two connected segments and the residual ratio of traffic volume for each segment can be computed using historical trajectory data. We then propose two different algorithmic approaches to solve the problem. The first one is a best-first algorithm BF , with an approximation ratio of 1-1/ e . To further accelerate the identification process in larger datasets, we also propose a sampling-based greedy algorithm SG . Finally, comprehensive experiments using three different datasets compare and contrast various solutions, and provide insights into important efficiency and effectiveness trade-offs among the respective methods.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Xiliang Wang ◽  
Yujing Tang ◽  
Qingyu Qi ◽  
Guomei Wang ◽  
Bowen Bi

The purpose of the optimization of holiday traffic emergency traffic organization is to solve the problem of serious traffic jams in holiday scenic spots. Based on the prediction of traffic volume and traffic mode division in the future years of the scenic spot, the traffic accident route is analyzed to provide theoretical support for the emergency traffic organization and planning of the scenic spot. This article takes the Shijiazhuang Jinta Bay scenic area as the research object, based on the traffic volume of the Jinta Bay tourist scenic area from 2009 to 2016, analyzes the traffic environment of the scenic area, predicts the traffic demand, and builds a one-way traffic organization double-layer optimization model. The simulated annealing algorithm is used to solve the model, an emergency transportation organization optimization plan is formulated, and the feasibility of the plan is verified through VISSIM simulation. The results of the study show that the one-way traffic organization method reduces the average vehicle delay by 32.2% and the average queue length by 14.5%. The one-way traffic organization based on branch diversion can more effectively solve the main road jamming and congestion caused by traffic accidents, prevent the occurrence of secondary accidents, and reduce the economic losses of scenic area managers. At the same time, the purpose of ensuring the tourist quality of tourists and the economic interests of scenic spot management departments is ensured.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Yalong Pi ◽  
Nick Duffield ◽  
Amir H. Behzadan ◽  
Tim Lomax

AbstractAccurate and prompt traffic data are necessary for the successful management of major events. Computer vision techniques, such as convolutional neural network (CNN) applied on video monitoring data, can provide a cost-efficient and timely alternative to traditional data collection and analysis methods. This paper presents a framework designed to take videos as input and output traffic volume counts and intersection turning patterns. This framework comprises a CNN model and an object tracking algorithm to detect and track vehicles in the camera’s pixel view first. Homographic projection then maps vehicle spatial-temporal information (including unique ID, location, and timestamp) onto an orthogonal real-scale map, from which the traffic counts and turns are computed. Several video data are manually labeled and compared with the framework output. The following results show a robust traffic volume count accuracy up to 96.91%. Moreover, this work investigates the performance influencing factors including lighting condition (over a 24-h-period), pixel size, and camera angle. Based on the analysis, it is suggested to place cameras such that detection pixel size is above 2343 and the view angle is below 22°, for more accurate counts. Next, previous and current traffic reports after Texas A&M home football games are compared with the framework output. Results suggest that the proposed framework is able to reproduce traffic volume change trends for different traffic directions. Lastly, this work also contributes a new intersection turning pattern, i.e., counts for each ingress-egress edge pair, with its optimization technique which result in an accuracy between 43% and 72%.


2022 ◽  
Vol 14 (1) ◽  
pp. 474
Author(s):  
Xiaoyuan Wang ◽  
Shijie Liu ◽  
Huili Shi ◽  
Hui Xiang ◽  
Yang Zhang ◽  
...  

Lane Utilization Ratio (LUR), affected by lane selection behavior directly, represents the traffic distribution on different lanes of road section for a single direction. The research on LUR, especially under Penetration Conditions of Connected and Automated Vehicles (PCCAV), is not comprehensive enough. Considering the difficulty in the conduction of real vehicle experiment and data collection under PPCAV, the lane selection model based on phase-field coupling and set pair logic, which considers the full-information of lanes, was used to carry out microscopic traffic simulation. From the analysis of microsimulation results, the basic relationships between Penetration of Connected and Automated Vehicles (PCAV), traffic volume, and Lane-Changing Times, also that between PCAV, traffic volume, and LUR in the basic section of the urban expressway were studied. Moreover, the influence of driving propensity on the effect of PCAVs was also studied. The research results could enrich the traffic flow theory and provide the theoretical basis for traffic management and control.


Author(s):  
Andrzej Bąkowski ◽  
Leszek Radziszewski

The study carried out an analysis of the vehicle traffic parameters on a national road in 2011-2016. The variability and uncertainty of results were evaluated. An analysis of traffic data recorded on the city's entry and exit lanes was carried out. The variations in traffic volume are of interest e.g. in dynamic traffic management systems and navigation services, examining the benefits of flexible work time and places and assessing the environmental effects of traffic congestion. Research has shown that the assumption that lanes perform equally is not always true. Traffic volume models should be periodically calibrated taking into account the shape of the daily profile, which may, for example, allow public transport timetables to be more responsive to the needs of travelers.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Pedro José Pérez-Martínez ◽  
Tiago Magalhães ◽  
Isabela Maciel ◽  
Regina M. de Miranda ◽  
Prashant Kumar

This paper presents an analysis of the effects of the COVID-19 pandemic on the air quality of the Metropolitan Region of São Paulo (MRSP). The effects of social distancing are still recent in the society; however, it was possible to observe patterns of environmental changes in places that had adhered transportation measures to combat the spread of the coronavirus. Thus, from the analysis of the traffic volumes made on some of the main access highways to the MRSP, as well as the monitoring of the levels of fine particulate matter (PM2.5), carbon monoxide (CO) and nitrogen dioxide (NO2), directly linked to atmospheric emissions from motor vehicles–which make up about 95% of air polluting agents in the region in different locations–we showed relationships between the improvement in air quality and the decrease in vehicles that access the MRSP. To improve the data analysis, therefore, the isolation index parameter was evaluated to provide daily information on the percentage of citizens in each municipality of the state that was effectively practicing social distancing. The intersection of these groups of data determined that the COVID-19 pandemic reduced the volume of vehicles on the highways by up to 50% of what it was in 2019, with the subsequent recovery of the traffic volume, even surpassing the values from the baseline year. Thus, the isolation index showed a decline of up to 20% between its implementation in March 2020 and December 2020. These data and the way they varied during 2020 allowed to observe an improvement of up to 50% in analyzed periods of the pollutants PM2.5, CO and NO2 in the MRSP. The main contribution of this study, alongside the synergistic use of data from different sources, was to perform traffic flow analysis separately for light and heavy duty vehicles (LDVs and HDVs). The relationships between traffic volume patterns and COVID-19 pollution were analyzed based on time series.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 86
Author(s):  
Jongdae Baek

Accurate regional classification of highways is a critical prerequisite to implement a tailored safety assessment. However, there has been inadequate research on objective classification considering traffic flow characteristics for highway safety assessment purposes. We propose an objective and easily applicable classification method that considers the administrative divisions of South Korea. We evaluated the feasibility of this method through various theoretical analysis techniques using the data collected from 536 permanent traffic volume counting stations for the national highways in South Korea in 2019. The ratio of the annual average hourly traffic volume to the annual average daily traffic was used as the explanatory variable. The corresponding results of factor and cluster analyses with this ratio showed a 61% concordance with the urban, suburban, and rural areas classified by the administrative divisions. The results of two-sample goodness-of-fit tests also confirmed that the difference in the three distributions of hourly volume ratios was statistically significant. The results of this study can help enhance highway safety and facilitate the development and application of more appropriate highway safety assessment tools, such as Road Assessment Programs or crash prediction models, for specific regions using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document