Automotive Hybrid Technology

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Chen Jingrui

In the most recent period, gasoline and diesel are still the main energy sources of the car. The new energy vehicles need to be solved in the near future. The new medium of the internal combustion engine and the alternative combustion vehicles. The medium-term scheme is to reduce the fuel consumption and emissions of the hybrid vehicles. The program is pure electric vehicles and fuel cell vehicles. While new energy vehicles offer a wide range of alternative fuels for fuel-based fuels, hybrid vehicles, and fuel cell vehicles that use fuel and power systems for automotive hydrogen fuel cells, but because of the current level of technological development, search for a wide range of alternative fuels, the development of closer to the market of hybrid technology, is the development of alternative energy is the most practical step. And pure electric vehicles and hydrogen fuel cells because of its technology is still difficult to achieve a revolutionary breakthrough, it is difficult to become the automotive industry's recent development goals. In today's social situation, the hybrid can be a better solution to fuel consumption problems and pollution problems. It will mainly introduce the advantages and feasibility of hybrid.

2021 ◽  
Vol 13 (9) ◽  
pp. 4872
Author(s):  
Eugene Yin Cheung Wong ◽  
Danny Chi Kuen Ho ◽  
Stuart So ◽  
Chi-Wing Tsang ◽  
Eve Man Hin Chan

Facing global warming and recent bans on the use of diesel in vehicles, there is a growing need to develop vehicles powered by renewable energy sources to mitigate greenhouse gas and pollutant emissions. Among the various forms of non-fossil energy for vehicles, hydrogen fuel is emerging as a promising way to combat global warming. To date, most studies on vehicle carbon emissions have focused on diesel and electric vehicles (EVs). Emission assessment methodologies are usually developed for fast-moving consumer goods (FMCG) which are non-durable household goods such as packaged foods, beverages, and toiletries instead of vehicle products. There is an increase in the number of articles addressing the product carbon footprint (PCF) of hydrogen fuel cell vehicles in the recent years, while relatively little research focuses on both vehicle PCF and fuel cycle. Zero-emission vehicles initiative has also brought the importance of investigating the emission throughout the fuel cycle of hydrogen fuel cell and its environmental impact. To address these gaps, this study uses the life-cycle assessment (LCA) process of GREET (greenhouse gases, regulated emissions, and energy use in transportation) to compare the PCF of an EV (Tesla Model 3) and a hydrogen fuel cell car (Toyota MIRAI). According to the GREET results, the fuel cycle contributes significantly to the PCF of both vehicles. The findings also reveal the need for greater transparency in the disclosure of relevant information on the PCF methodology adopted by vehicle manufacturers to enable comparison of their vehicles’ emissions. Future work will include examining the best practices of PCF reporting for vehicles powered by renewable energy sources as well as examining the carbon footprints of hydrogen production technologies based on different methodologies.


Author(s):  
Ronald M. Dell ◽  
Patrick T. Moseley ◽  
David A.J. Rand

Author(s):  
John Gangloff ◽  
James Kast ◽  
Geoffrey Morrison ◽  
Jason Marcinkoski

Hydrogen fuel cells are an important part of a portfolio of strategies for reducing petroleum use and emissions from medium and heavy duty (MD and HD) vehicles; however, their deployment is very limited compared to other powertrains. This paper addresses gaseous hydrogen storage tank design and location on representative MD and HD vehicles. Storage design is based on vehicle size and occupation. The available storage space on representative vehicles is assessed and is used to estimate the weight and capacity of composite material-based compressed gaseous storage at 350 and 700 bar. Results demonstrate the technical feasibility of using hydrogen storage for Fuel Cell Electric Trucks (FCETs) across a wide range of the MD and HD vehicle market. This analysis is part of a longer-term project to understand which market segments provide the maximum economic impact and greenhouse gas reduction opportunities for FCETs.


2014 ◽  
Vol 1006-1007 ◽  
pp. 1199-1202
Author(s):  
Yuan Ren ◽  
Zhi Dan Zhong ◽  
Zhi Wen Zhang

Current development in fuel cells and hydrogen fuel cells vehicles are first described in the paper, and then the paper gives up-to-date review of hydrogen fuel cell vehicle technological status and hydrogen infrastructure. Then the paper analysis barriers in hydrogen fuel cell vehicle commercialization and the cost reduction challenges especially in the material for catalyst and operational condition. Then in the end this paper gives the hydrogen fuel cell vehicles prospects and outlook.


Author(s):  
John J. Gangloff ◽  
James Kast ◽  
Geoffrey Morrison ◽  
Jason Marcinkoski

Hydrogen fuel cells are an important part of a portfolio of strategies for reducing petroleum use and emissions from medium and heavy duty (MD and HD) vehicles; however, their deployment is very limited compared to other powertrains. This paper addresses gaseous hydrogen storage tank design and location on representative MD and HD vehicles. Storage design is based on vehicle size and occupation. The available storage space on representative vehicles is assessed and is used to estimate the weight and capacity of composite material-based compressed gaseous storage at 350 and 700 bar. Results demonstrate the technical feasibility of using hydrogen storage for fuel cell electric trucks (FCETs) across a wide range of the MD and HD vehicle market. This analysis is part of a longer-term project to understand which market segments provide the maximum economic impact and greenhouse gas reduction opportunities for FCETs.


Sign in / Sign up

Export Citation Format

Share Document