APPLYING COMPUTER ALGEBRA SYSTEM MATHEMATICA IN TEACHING DISCRETE MATHEMATICS

Author(s):  
Larisa V. Antonova ◽  
◽  
Tatyana V. Burzalova ◽  
Aleksandr V. Daneev ◽  
◽  
...  
Author(s):  
José Alfredo Sánchez de León

Polynomials play an important role in many fields of mathematics as well as in other areas such as physics and engineering. Binomials and multinomies represent a special kind of polynomials, regarded as a wide frame of study by some mathematical branches such as discrete mathematics. Under this subject a novel method was recently developed that addresses the task of performing the calculation of binomial and multinomial coefficients, by means of the setting of an arrangement of sequences of summations. The document unfolded hereby aims to be an extension of that work. Through this document, firstly it will be deemed an equation resultant from that work, targeted at binomial calculations, and will be extended to the multinomial instance. Afterwards a theoretical case of study will be presented, to expose the application of this framework. And lastly an algorithm will be raised to set it up on a computer algebra system (CAS), and some practical examples will be bestowed.


1998 ◽  
Vol 37 (03) ◽  
pp. 235-238 ◽  
Author(s):  
M. El-Taha ◽  
D. E. Clark

AbstractA Logistic-Normal random variable (Y) is obtained from a Normal random variable (X) by the relation Y = (ex)/(1 + ex). In Monte-Carlo analysis of decision trees, Logistic-Normal random variates may be used to model the branching probabilities. In some cases, the probabilities to be modeled may not be independent, and a method for generating correlated Logistic-Normal random variates would be useful. A technique for generating correlated Normal random variates has been previously described. Using Taylor Series approximations and the algebraic definitions of variance and covariance, we describe methods for estimating the means, variances, and covariances of Normal random variates which, after translation using the above formula, will result in Logistic-Normal random variates having approximately the desired means, variances, and covariances. Multiple simulations of the method using the Mathematica computer algebra system show satisfactory agreement with the theoretical results.


1995 ◽  
Vol 10 (3) ◽  
pp. 329-337 ◽  
Author(s):  
John Hutton ◽  
James Hutton

2020 ◽  
Vol 9 (1) ◽  
pp. 53
Author(s):  
Kamhar Ngado ◽  
Rosnawati Rosnawati ◽  
Heri Retnawati ◽  
Sri Andayani

2021 ◽  
Vol 254 ◽  
pp. 02006
Author(s):  
Liubov Feshchenko ◽  
Gleb Vodinchar

The paper describes a technology for the automated compilation of equations for shell models of turbulence in the computer algebra system Maple. A general form of equations for the coefficients of nonlinear interactions is given, which will ensure that the required combination of quadratic invariants and power-law solutions is fulfilled in the model. Described the codes for the Maple system allowing to generate and solve systems of equations for the coefficients. The proposed technology allows you to quickly and accurately generate classes of shell models with the desired properties.


2012 ◽  
Vol 56 (1) ◽  
pp. 139-144
Author(s):  
Dumitru N. Vulcanov ◽  
Remus-Ştefan Ş. Boată

AbstractThe article presents some new aspects and experience on the use of computer in teaching general relativity and cosmology for undergraduate students (and not only) with some experience in computer manipulation. Some years ago certain results were reported [1] using old fashioned computer algebra platforms but the growing popularity of graphical platforms as Maple and Mathematica forced us to adapt and reconsider our methods and programs. We will describe some simple algebraic programming procedures (in Maple with GrTensorII package) for obtaining and the study of some exact solutions of the Einstein equations in order to convince a dedicated student in general relativity about the utility of a computer algebra system.


Sign in / Sign up

Export Citation Format

Share Document