scholarly journals Robust Vehicle Suspension System by Converting Active & Passive Control of a Vehicle to Semi-Active Control System Analytically

Author(s):  
Hassan Elahi ◽  
Asif Israr ◽  
M. Zubair Khan ◽  
Shamraiz Ahmad
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yanling Liu ◽  
Wentao Zhao ◽  
Xiaofeng Yang ◽  
Long Chen ◽  
Yujie Shen

As a two-terminal mechanical element, the inerter has been successfully applied in various mechanical fields, such as automotive engineering and civil engineering, for passive control and semiactive control. In this paper, a hydraulic electric inerter is considered an active device to suppress the vibration of a vehicle suspension system. The components and working principle of the hydraulic electric inerter are first introduced. On the basis of a force test of the hydraulic electric inerter, nonlinear factors such as friction, the damping force, and the elastic effect are analyzed, and parameter identification methods are adopted to identify the detailed parameters. A dynamic model of the vehicle suspension system employing a nonlinear hydraulic electric inerter is established, and the predictive controller is designed to further improve the vibration isolation performance of the suspension system. Numerical simulations show that the performance of the vehicle ISD (inerter-spring-damper) suspension system is significantly improved compared to the passive suspension. Finally, bench tests are carried out, and the advantages of vehicle ISD suspension are demonstrated. The RMS (root-mean-square) value of the vehicle body acceleration and the RMS value of the suspension working space are reduced by 16.1% and 8.9%, respectively.


Mechatronics ◽  
2002 ◽  
Vol 12 (7) ◽  
pp. 963-973 ◽  
Author(s):  
G.Z. Yao ◽  
F.F. Yap ◽  
G. Chen ◽  
W.H. Li ◽  
S.H. Yeo

Author(s):  
Xiang Gao ◽  
Junchuan Niu ◽  
Ruihao Jia ◽  
Zhihui Liu

In order to reuse the energy dissipated by magneto-rheological (MR) damper, a self-powered MR damper is designed and analyzed theoretically. The main thrust of this work is establishing the mechanical-electromagnetic coupling model of quarter vehicle suspension based on self-powered MR damper, whilst the energy conversion efficiency of self-powered MR damper with electromagnetic parameters changing is investigated. The magnetic circuit model is formulated firstly. The influence of electromagnetic parameters on current in MR damper is analyzed systemically in frequency domain. A multi-objective optimization method is performed to determine the electromagnetic parameters. Subsequently a quarter vehicle suspension system with self-powered MR damper is introduced. The mechanical-electromagnetic coupling model is established. The frequency response function is derived under random road excitation. The vibration isolation capability of the proposed quarter vehicle suspension system is addressed in time and frequency domain respectively. Compared to passive control, the amplitude of sprung mass velocity, acceleration and transmissibility are reduced by 51%, 78% and about 10 dB in time and frequency domain respectively. Finally the energy conversion efficiency of self-powered MR damper with magnetic parameters changing under random road excitation is discussed. The vibration isolation performance of self-powered MR damper is more effective than passive control, especially in resonance range of the suspension system.


Sign in / Sign up

Export Citation Format

Share Document