semiactive control
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiufang Lin ◽  
Weiqing Lin

The control strategy for protecting adjacent structures from earthquake excitations is gaining increasing significance. In this study, to improve the seismic performance, a semiactive control strategy using magnetorheological (MR) dampers to couple the adjacent structures is proposed. In this control strategy, to fully exploit the performance of MR dampers, the allocation (including the locations and the number) and fuzzy logic controller (FLC) system of MR dampers are simultaneously optimally designed by whale optimization algorithm (WOA) with a special encoding scheme. Simulation results verify that WOA provides competitive performance compared with the other three metaheuristic algorithms in terms of solution quality and robustness. Compared with other semiactive control methods including on-off, linear quadratic regulator-clipped voltage law, and WOA-FLC (optimal allocation is not considered) methods, by using much less MR dampers, the proposed control strategy can exhibit more excellent overall performance in terms of reducing the seismic responses and mitigating pounding.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
C. Steven Díaz-Choque ◽  
L. C. Félix-Herrán ◽  
Ricardo A. Ramírez-Mendoza

This manuscript establishes a methodology that guides the designers to develop an optimal controller for a semiactive suspension system. The methodology’s processes are generally explained and straightforwardly, so a designer can extrapolate the methodology to a specific problem. Furthermore, this research presents an optimal control strategy for a semiactive control applied to a quarter vehicle model as an example of using the methodology. A particular interest is made in the advantages of such a simple synthesis and in the compromises that must be done in skyhook and groundhook control law applications. This manuscript exposes a logical and straightforward approach for choosing the controllers’ design parameters; also, efforts must be made to express precise performance specifications and constraints in the control design. The herein methodology could be relevant in the process design for intelligent suspensions, from one-quarter toward the entire vehicle.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shaopei Hu ◽  
Chao Su ◽  
Mingjiao Yan ◽  
Yang Yang ◽  
Jiawei Bai ◽  
...  

With the continuous development of hydropower stations, the capacities and the heads of hydro generator units are increasing, and the plant vibration problem is becoming more and more serious. A numerical simulation method for the vibration reduction control of magnetorheological (MR) dampers suitable for large-scale complex structures was proposed. The method is simple and easy to implement, and the semiactive control of the MR damper could be achieved by adjusting the current switch and size. On the basis of a numerical simulation, a mathematical model for the optimal layout of an MR damper device was established. The objective function was the vertical velocity and the vertical acceleration response of the generator floor. The results showed that the proposed semiactive control numerical simulation method could be applied to the vibration control of the hydropower plant structure, and the vertical velocity and vertical acceleration were reduced by 10.96% and 12.90%, respectively, compared with those without structural vibration control. At the same time, the proposed optimized layout method was effective and feasible, and the damping effect of the MR damper could be effectively improved through the optimized layout.


2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
Mohamed Abdel-Rohman ◽  

To increase the onset galloping wind speed, after which galloping of the flexible suspension bridges occurs, resulting in the failure of these bridges due to wind, semiactive control mechanisms could be installed in the bridge to increase its damping. The time delay in processing the active control force and the actuator’s dynamics are, however, major practical problems, which may affect the dynamic stability of the semiactive controlled structure. This paper shows the effect of the time delay on the magnitude of the onset galloping wind speed for a suspension bridge controlled by a semiactive control mechanism. It is shown that the time delay decreases the magnitude of the onset galloping wind speed. This makes the suspended cables in the suspension bridge susceptible for galloping, which may cause progressive collapse for the bridge at low mean wind speeds. This could be avoided if the active control force is designed considering the time delay effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Rongyao Yuan ◽  
Yang Yang ◽  
Chao Su ◽  
Shaopei Hu ◽  
Heng Zhang ◽  
...  

Magnetorheological (MR) dampers, as an intelligent vibration damping device, can quickly change the damping size of the material in milliseconds. The traditional semiactive control strategy cannot give full play to the ability of the MR dampers to consume energy and reduce vibration under different currents, and it is difficult to control the MR dampers accurately. In this paper, a semiactive control strategy based on reinforcement learning (RL) is proposed, which is based on “exploring” to learn the optimal value of the MR dampers at each step of the operation, the applied current value. During damping control, the learned optimal action value for each step is input into the MR dampers so that they provide the optimal damping force to the structure. Applying this strategy to a two-layer frame structure was found to provide more accurate control of the MR dampers, significantly improving the damping effect of the MR dampers.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhuo Chen ◽  
Huancai Lu

Improving product quality of machining components has always met with problems due to the vibration of the milling machine’s spindle, which can be reduced by adding a vibration absorber. The tuned vibration absorber (TVA) has been studied extensively and found to have a narrow bandwidth, but the cutting force possesses wide bandwidth in the process of machining parts. Introducing nonlinearity into the dynamic vibration absorber can effectively increase the bandwidth of vibration suppression and can significantly improve the robustness of the vibration absorber. In addition, a semiactive TVA has proved to be more effective than a passive TVA for many applications, so the main purpose of this study is to find some appropriate semiactive control methods for a nonlinear energy sink (NES), a nonlinear vibration absorber, in structural vibration applications. Two semiactive control methods are considered in this study: continuous groundhook damping control based on velocity and on-off groundhook damping control based on velocity. To fairly compare these vibration absorbers, the optimal parameters of a passive TVA, a passive NES, and two semiactive NESs are designed using numerical optimization techniques to minimize the root-mean-square acceleration. Two cutting forces are introduced in this study, a periodic force and an aperiodic force, and the four vibration absorbers are compared. When the primary structure is excited with aperiodic cutting force, the amplitude of the primary structure decreased by 17.73% with the passive TVA, by 72.29% with the passive NES, by 73.54% with the on-off NES, and by 87.54% with the continuous NES. When the primary structure is excited with periodic cutting force, the amplitude of the primary structure decreased by 49.01% with a passive TVA, by 86.93% with a passive NES, by 96.38% with an on-off NES, and by 99.23% with a continuous NES. The results show that the passive NES is better than the passive TVA; the semiactive NES provides more effective vibration attenuation than the passive NES, and the continuous control is more effective than the on-off control.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Longji Jian ◽  
Feifei Song ◽  
Yuansong Huang

In order to improve the strength of civil engineering structure, a semiactive control model of civil engineering structure based on neural network is proposed, and the control constraint parameter model of semiactive regulation of civil engineering structure is constructed. Combined with the controlled object model, the semiactive control model of civil engineering structure is designed, the mechanical analysis model of civil engineering structure is established, and the semiactive regulation of civil engineering structure is carried out by the small disturbance suppression method. The semiactive adjustment of civil engineering structure is carried out by using the structural strength fusion tracking method. Taking the internal strength and shock yield response of civil engineering structure as constraint parameters, the semiactive control of civil engineering structure is carried out and PID neural network is used to optimize the control system. The simulation results show that the semiactive control of civil engineering structure with this method has good stability, and the strength and yield response strength of civil engineering structure are improved, and it has good control efficiency.


Sign in / Sign up

Export Citation Format

Share Document