scholarly journals LARGE EDDY SIMULATION OF FLOW OVER ELLIPTIC CYLINDER ARRAY IN SQUARE CONFIGURATION AT SUBCRITICAL REYNOLDS NUMBERS

2020 ◽  
pp. 204-2019
Author(s):  
Rajesh KUMAR ◽  
Nirmal Kant SİNGH
2011 ◽  
Vol 23 (7) ◽  
pp. 075101 ◽  
Author(s):  
I. Afgan ◽  
Y. Kahil ◽  
S. Benhamadouche ◽  
P. Sagaut

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

Large eddy simulation calculations are conducted for flow in a channel with dimples and protrusions on opposite walls with both surfaces heated at three Reynolds numbers, ReH=220, 940, and 9300, ranging from laminar, weakly turbulent, to fully turbulent, respectively. Turbulence generated by the separated shear layer in the dimple and along the downstream rim of the dimple is primarily responsible for heat transfer augmentation on the dimple surface. On the other hand, augmentation on the protrusion surface is mostly driven by flow impingement and flow acceleration between protrusions, while the turbulence generated in the wake has a secondary effect. Heat transfer augmentation ratios of 0.99 at ReH=220,2.9 at ReH=940, and 2.5 at ReH=9300 are obtained. Both skin friction and form losses contribute to pressure drop in the channel. Form losses increase from 45% to 80% with increasing Reynolds number. Friction coefficient augmentation ratios of 1.67, 4.82, and 6.37 are obtained at ReH=220, 940, and 9300, respectively. Based on the geometry studied, it is found that dimples and protrusions may not be viable heat transfer augmentation surfaces when the flow is steady and laminar.


Author(s):  
Fabio Bigoni ◽  
Stefano Vagnoli ◽  
Tony Arts ◽  
Tom Verstraete

The scope of this work is to obtain a deep insight of the occurrence, development and evolution of the laminar separation bubble which occurs on the suction side of the high-lift T106-C low pressure turbine blade operated at correct engine Mach and Reynolds numbers. The commercial codes Numeca FINE/Turbo and FINE/Open were used for the numerical investigation of a set of three different Reynolds numbers. Two different CFD approaches, characterized by a progressively increasing level of complexity and detail in the solution, have been employed, starting from a steady state RANS analysis and ending with a Large Eddy Simulation. Particular attention was paid to the study of the open separation occurring at the lowest Reynolds number, for which a Large Eddy Simulation was performed in order to try to correctly capture the involved phenomena and their characteristic frequencies. In addition, the potentialities of the codes employed for the analysis have been assessed.


Author(s):  
M Farhadi ◽  
M Rahnama

Large eddy simulation of flow over a square cylinder in a channel is performed at Reynolds numbers of 22 000 and 21 400. The selective structure function (SSF) modelling of the subgrid-scale stress terms is used and the convective terms are discretized using quadratic upstream interpolation for convective kinematics (QUICK) and central difference (CD) schemes. A series of time-averaged velocities, turbulent stresses, and some global flow parameters such as lift and drag coefficients and their fluctuations are computed and compared with experimental data. The suitability of SSF model has been shown by comparing the computed mean flow velocities and turbulent quantities with experiments. Results show negligible variation in the flow parameters for the two Reynolds numbers used in the present computations. It was observed that both QUICK and CD schemes are capable of obtaining results close to those of the experiments with some minor differences.


Author(s):  
Karsten Hasselmann ◽  
Stefan aus der Wiesche

In this contribution, a Large-Eddy Simulation (LES) analysis was carried out, to get detailed information about the unsteady flow behavior and loss generation in a turbine cascade at moderate Reynolds numbers. A comprehensive comparison study with experimental data was conducted to validate the LES results. Compared to Reynolds averaged Navier-Stokes (RANS) results, the LES shows a much better agreement with the measured values of the profile loss coefficient, downstream velocity profile, and blade pressure distribution. The unsteady separation and reattachment process was covered well by the LES approach. The power spectral density (PSD) profiles at several positions of the downstream wake were compared and analyzed. Although the results of the LES show mainly a good agreement with the experimental values, there are still some deviations at high frequency. In summery the present case study indicates the high potential of LES especially in case of moderate Reynolds numbers with flow separation.


2016 ◽  
Vol 38 (17) ◽  
pp. 1439-1448 ◽  
Author(s):  
Yongping Li ◽  
Liang Zhang ◽  
Qizhao Lin ◽  
Zuojin Zhu

Sign in / Sign up

Export Citation Format

Share Document