scholarly journals Facilitating Interdisciplinary Problem Solving Among Pre-collegiate Engineering Students via Materials Science Principles

2015 ◽  
Author(s):  
Denia Djokic ◽  
Wil Srubar
2017 ◽  
pp. 1465-1483 ◽  
Author(s):  
D. Vergara ◽  
M. Lorenzo ◽  
M.P. Rubio

The use of virtual resources in university teaching is becoming a key issue, especially in engineering degrees where novel virtual environments are being developed. This chapter described a study on the opinions of engineering students with regard to the use of diverse virtual applications in subjects related to Materials Science and Engineering. From 2011 to 2014, engineering students of several universities and diverse nationalities were surveyed regarding their views on using virtual environments in learning. The results presented in this chapter showed that students gave great importance to the use of virtual resources in university teaching but, at the same time, they also considered the presence of the teacher in the classroom to be very essential. The findings also provided the timetable distribution of topics that, according to the students' opinion, should be considered in the subjects of Materials Science, such as master classes, problem solving classes, practical classes in both real and virtual laboratories.


Author(s):  
Holly Henry ◽  
David H. Jonassen ◽  
Robert A. Winholtz ◽  
Sanjeev K. Khanna

Problem solving is the primary intellectual activity of mechanical engineers. Therefore, enhancing problem-solving skills is essential for preparing mechanical engineering students for the workplace. The most powerful method for enhancing problem-solving skills is problem-based learning (PBL). This paper presents the design and construction of a PBL-based course in materials science at the junior level. We examine the ability of the course based on problems to enable students to learn both fundamental knowledge of the subject matter and also problem solving skills and contrast it with outcomes in a traditional lecture based course. The issues and challenges faced and qualitative evidence is presented.


Author(s):  
Sanjeev K. Khanna ◽  
Robert A. Winholtz ◽  
David H. Jonassen ◽  
Andrew Tawfik ◽  
Holly Henry

Problem solving is the primary intellectual activity of engineers. Therefore, enhancing problem-solving skills is essential for preparing engineering students for practice in the profession. A powerful approach for enhancing problem-solving skills is the problem-based learning (PBL) method. This paper presents the design and construction of a PBL-based course in materials science at the junior level in a mechanical & aerospace engineering (MAE) department. We assess the ability of a PBL course based on longer complex problems to enable students to learn both fundamental knowledge of the subject matter and also problem solving skills and contrast it with outcomes in a traditional lecture based course. The issues and challenges faced in assessing and implementing PBL are discussed.


Author(s):  
D. Vergara ◽  
M. Lorenzo ◽  
M.P. Rubio

The use of virtual resources in university teaching is becoming a key issue, especially in engineering degrees where novel virtual environments are being developed. This chapter described a study on the opinions of engineering students with regard to the use of diverse virtual applications in subjects related to Materials Science and Engineering. From 2011 to 2014, engineering students of several universities and diverse nationalities were surveyed regarding their views on using virtual environments in learning. The results presented in this chapter showed that students gave great importance to the use of virtual resources in university teaching but, at the same time, they also considered the presence of the teacher in the classroom to be very essential. The findings also provided the timetable distribution of topics that, according to the students' opinion, should be considered in the subjects of Materials Science, such as master classes, problem solving classes, practical classes in both real and virtual laboratories.


Author(s):  
Sean Maw ◽  
Janice Miller Young ◽  
Alexis Morris

Most Canadian engineering students take a computing course in their first year that introduces them to digital computation. The Canadian Engineering Accreditation Board does not specify the language(s) that can or should be used for instruction. As a result, a variety of languages are used across Canada. This study examines which languages are used in degree-granting institutions, currently and in the recent past. It also examines why institutions have chosen the languages that they currently use. In addition to the language used in instruction, the types and hours of instruction are also analyzed. Methods of instruction and evaluation are compared, as well as the pedagogical philosophies of the different programs with respect to introductory computing. Finally, a comparison of the expected value of this course to graduates is also presented. We found a more diverse landscape for introductory computing courses than anticipated, in most respects. The guiding ethos at most institutions is skill and knowledge development, especially around problem solving in an engineering context. The methods to achieve this are quite varied, and so are the languages employed in such courses. Most programs currently use C/C++, Matlab, VB and/or Python.


MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1673-1679 ◽  
Author(s):  
Moraima De Hoyos-Ruperto ◽  
Cristina Pomales-García ◽  
Agnes Padovani ◽  
O. Marcelo Suárez

ABSTRACTThere is a need to expand the fundamental skills in science and engineering to include innovation & entrepreneurship (I&E) skills as core competencies. To better prepare the future Nanotechnology workforce, the University of Puerto Rico-Mayagüez Nanotechnology Center, broadened the educational content beyond traditional skills in science and engineering. The Center, offers a rich educational program for materials and nano scientists that aims to create the next generation of knowledgeable, experienced professionals, and successful entrepreneurs, who can develop value-added innovations that can spur economic growth and continue to impact the quality of life for society. Within the educational program an Entrepreneurship Education Co-Curricular Program (EEP) incorporates I&E training into the Materials Science, Nanotechnology, STEM (Science, Technology, Engineering, and Mathematics) faculty and student experiences. The EEP consists of a two-year series of workshops that seek to develop an entrepreneurial mindset, including five key topics: 1) Generation of Ideas, 2) Entrepreneurial Vision, 3) Early Assessment of Ideas, 4) Identification of Opportunities, and 5) Strategic Thinking. The EEP goals, target audience, and implementation strategy, is described with an evaluation tool to assess the program’s success in developing an entrepreneurial mindset.


2020 ◽  
Author(s):  
Rui Pan ◽  
Johannes Strobel ◽  
Monica Cardella

Sign in / Sign up

Export Citation Format

Share Document