scholarly journals Simulation of a Plate Heat Exchanger Operating with Nanofluid Coolant Using CFD

2021 ◽  
Vol 39 (1) ◽  
pp. 235-240
Author(s):  
Tiari R. Rezende ◽  
Regina F. Vianna ◽  
Samuel Luporini

The use of nanofluids as coolant fluid in a plate heat exchanger (PHE) was investigated by conducting 3D CFD (Computational Fluid Dynamics) simulations. Al2O3/water nanofluid with volume concentrations of 2%, 3% and 4% was used as coolant fluid and water as hot fluid. In addition, the effects of corrugation angle of the plates were analyzed by varying them between 0° and 60°. Validation was performed by using heat transfer coefficients experimentally obtained in a previous study. Results show that the use of nanofluids in higher concentrations improves the performance of the PHE’s parameters. The angles of 30° and 60° between the plates reduce pressure drop and reflux regions improving the heat exchange. The variations of the nanofluid flow must take into account the proper pressure drop for the process where is PHE is employed because the increased flow rate results in a significant increase in the pressure drop. In general, this work has potential to be used for enhancing the design of PHEs.

2016 ◽  
Vol 831 ◽  
pp. 188-197 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Artur Fiuk ◽  
Wojciech Miciak ◽  
Bartłomiej Siemieńczuk

This study is focused on experimental investigation of a selected type of brazed plate heat exchanger (PHEx). The main aim of the paper was to experimentally check the ability of nanofluids to enhance the performance of PHEx. A typical water-Al2O3 nanofluid was tested and compared to that of the base fluid, i.e. water. Nanoparticles were tested at the concentration of 0.1% and 1% by weight. Impact of the 1 day and 3 days break of operation of the tested PHEx on its performance was of particular interest. Pressure drop in all runs was measured as well. The Wilson approach was applied in order to estimate heat transfer coefficients for the PHEx passages. It was observed, that addition of nanoparticles resulted in deterioration of an overall heat transfer coefficient for the selected PHEx and tested conditions, i.e. temperature range and Reynolds number. Moreover, substantial increase of pressure drop was recorded after each break of operation of the tested PHEx.


Author(s):  
Louis C. Burmeister

A formula is derived for the dependence of heat exchanger effectiveness on the number of transfer units for a spiral-plate heat exchanger with equal capacitance rates. The difference-differential equations that describe the temperature distributions of the two counter-flowing fluids, neglecting thermal radiation, are solved symbolically to close approximation. Provision is made for offset inlet and exit of the hot and cold fluids at the outer periphery and for large heat transfer coefficients in entrance regions. The peak effectiveness and the number of transfer units at which it occurs are predicted.


2016 ◽  
Vol 37 (3) ◽  
pp. 19-29 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Artur Fiuk ◽  
Krzysztof Typiński ◽  
Bartłomiej Siemieńczuk

Abstract This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx). The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.


Author(s):  
S. E. Bozhkova ◽  
V. M. Yaschuk

The article considers the design of a plate heat exchanger widely used in the food industry. Its improvements are proposed, which consist in changing the shape of the plates that separate the heat carriers and the places where the flow input and output is located. The upgraded design of the heat exchanger has improved performance and weight-and-size characteristics, increased tightness and provides high heat transfer coefficients.


2001 ◽  
Author(s):  
B. Ouazia

Abstract An experimental investigation was carried out to provide data on heat transfer coefficient and pressure drop for upward flow of refrigerant 134a in a typical plate heat exchanger. Upflow boiling of R-134a in one channel receives heat from the hot downflow of water in the two adjacent channels. Measurements were conducted on three sets of plates with chevron angles of 0°, 30°, and 60°, and the effects of mean vapor quality, mass flux, and heat flux on the evaporation heat transfer and pressure drop were explored. It was found that the channels with small chevron angle have higher heat transfer than channels with large chevron angle, for both subcooling and vapor quality inlet conditions. It was clear that the heat transfer coefficients were not sensitive to the heat flux but were dependent on the flow conditions (mass velocity and vapour quality). Based on the experimental data, empirical correlations for the evaporation heat transfer enhancement factor and the two-phase pressure drop multipliers were proposed.


Sign in / Sign up

Export Citation Format

Share Document