scholarly journals Optimal Fractional-Order PI Control Design for a Variable Speed PMSG-Based Wind Turbine

2021 ◽  
Vol 54 (6) ◽  
pp. 915-922
Author(s):  
Sarir Noureddine ◽  
Sebaa Morsli ◽  
Allaoui Tayeb ◽  
Denai Mouloud

This paper focusses on the design of optimal control strategies for a variable-speed wind energy system based on Permanent Magnet Synchronous Generator (PMSG). The fractional order PI controller, denoted PIλ, is an extension of the classical PI controller, which provides greater flexibility, better performance and robustness, however the tuning of the controller parameters is challenging. In this work, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) provide approximate solutions to various problems and form a good optimization. In our system, they are used to have the PI regulator parameters and tune the parameters of the proposed controllers. The proposed controllers have been applied as maximum power point (MPPT) controllers for the wind turbine and to regulate the PMGS currents under variable weather conditions and. The results show that, among all these controllers, the fractional order PI controller optimized by the PSO leads to better performance in terms of the transient response characteristics such overshoot, rise time and settling time.

Author(s):  
Meriem Otmane Rachedi ◽  
Mohammed Larbi Saidi ◽  
Fayçel Arbaoui

Variable speed wind turbine systems (VSWT’s) have been in receipt of extensive attention among the various renewable energy systems. The present paper focuses on fuzzy fractional order proportional-integral (FFOPI) control segment for variable speed wind turbine (VSWT) directly driving permanent magnet synchronous generator (PMSG). The main objective of this study is to reach maximum power point tracking (MPPT) through combination of advanced control based on FFOPI control applied to generator side converter (turbine and PMSG). The basic idea of the FFOPI controller is to implement a fuzzy logic controller (FLC) in cascade with Fractional Order Proportional Integral controller (FOPI). A comparative study with FOPI and classical PI control schemes is made. The traditional PI controller cannot deliver a sufficiently great performance for the VSWT. However, the results found that the proposed approach (FFOPI) is more effective and feasible for controlling the permanent magnet synchronous generator to mantain maximum power extraction. The validation of results has been performed through simulation using Matlab/Simulink®.


Sign in / Sign up

Export Citation Format

Share Document