pwm rectifier
Recently Published Documents


TOTAL DOCUMENTS

895
(FIVE YEARS 139)

H-INDEX

44
(FIVE YEARS 4)

2022 ◽  
pp. 440-470
Author(s):  
Arezki Fekik ◽  
Hakim Denoun ◽  
Ahmad Taher Azar ◽  
Mustapha Zaouia ◽  
Nabil Benyahia ◽  
...  

In this chapter, a new technique has been proposed for reducing the harmonic content of a three-phase PWM rectifier connected to the networks with a unit power factor and also providing decoupled control of the active and reactive instantaneous power. This technique called direct power control (DPC) is based on artificial neural network (ANN) controller, without line voltage sensors. The control technique is based on well-known direct torque control (DTC) ideas for the induction motor, which is applied to eliminate the harmonic of the line current and compensate for the reactive power. The main idea of this control is based on active and reactive power control loops. The DC voltage capacitor is regulated by the ANN controller to keep it constant and also provides a stable active power exchange. The simulation results are very satisfactory in the terms of stability and total harmonic distortion (THD) of the line current and the unit power factor.


2021 ◽  
Vol 2136 (1) ◽  
pp. 012019
Author(s):  
Xudong Liu

Abstract At present, PWM rectifier is widely used in various high power and high voltage situations because of its high energy, low harmonic content, constant voltage and bidirectional energy. The energy supply system of subway traction power supply system based on PWM rectifier shows the topology of a dual transformer with three winding transformers and four PWM rectifiers in parallel, which is superior to the modular model. Finally, the correctness of the control strategy is verified by Matlab/Initial simulation.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7080
Author(s):  
Piotr Drozdowski ◽  
Dariusz Cholewa

The subject of this publication is a method of controlling the DC voltage of a PWM rectifier supplied by a multiphase cage induction generator with the number of stator phases greater than three operating in a wide range of driving speeds. Voltage regulation is performed by changing the frequency and amplitude of the stator voltages with simultaneous switching of the phase sequence of these voltages. The step change of the voltage sequence is made in the designated ranges of the generator speed, which enables the stabilization of the output voltage in a wide range from the minimum speed of about 25% of the rated speed. Such sequence switching changes the number of pole pairs produced by the winding for each supply sequence. The difference compared to multi-speed induction machines is that, in the presented solution, there is only one winding, not a few, which enables good use of the machine’s magnetic core in the same dimensions as for the three-phase machine of a similar power. Steady-state characteristics and dynamic operation were obtained using laboratory measurements of a standalone nine-phase induction generator. The automatic control system maintained the output voltage at the set level, regardless of the generator load and driving power.


Author(s):  
Salam Waley Shneen ◽  
Ghada Adel Aziz

Many industrial applications require the use of power electronic devices, which in turn help in overcoming the problems of variable load and fluctuations that occur at the end of feeding. The current study emphasizes that the use of different electric power generation systems with industrial applications needs control devices to work on improving the power quality and performance of systems in which there is an imbalance in the voltage or current due to the change of loads or feeding from the source. The present study also presents a model of a transformer widely used in industrial applications and this work includes simulating a three-phase rectifier by MATLAB. There are four cases in this work HWR (uncontrolled and controlled) and FWR (uncontrolled and uncontrolled) with different loads (R, RL & RC) including full wave type AC/DC using six electronic transformer silicon control rectifier (SCRs) once as well as unified half wave using three electronic transformer silicon control rectifier (SCRs). Simulation results include input, output voltage, and current with the waveform.


Author(s):  
J. Lamterkati ◽  
L. Ouboubker ◽  
M. Khafallah ◽  
A. El afia

<p><span>The study made in this paper concerns the use of the voltage-oriented control (VOC) of three-phase pulse width modulation (PWM) rectifier with constant switching frequency. This control method, called voltage-oriented controlwith space vector modulation (VOC-SVM). The proposed control scheme has been founded on the transformation between stationary (α-β) and and synchronously rotating (d-q) coordinate system, it is based on two cascaded control loops so that a fast inner loop controls the grid current and an external loop DC-link voltage, while the DC-bus voltage is maintained at the desired level and ansured the unity power factor operation. So, the stable state performance and robustness against the load’s disturbance of PWM rectifiers are boths improved. The proposed scheme has been implemented and simulated in MATLAB/Simulink environment. The control system of the VOC-SVM strategy has been built based on dSPACE system with DS1104 controller board. The results obtained show the validity of the model and its control method. Compared with the conventional SPWM method, the VOC-SVM ensures high performance and fast transient response.</span></p>


Sign in / Sign up

Export Citation Format

Share Document