scholarly journals Numerical Study of Fractional Mathieu Differential Equation Using Radial Basis Functions

2020 ◽  
Vol 7 (4) ◽  
pp. 568-576
Author(s):  
Hojjat Ghorbani ◽  
Yaghoub Mahmoudi ◽  
Farhad Dastmalchi Saei

In this paper, we introduce a method based on Radial Basis Functions (RBFs) for the numerical approximation of Mathieu differential equation with two fractional derivatives in the Caputo sense. For this, we suggest a numerical integration method for approximating the improper integrals with a singularity point at the right end of the integration domain, which appear in the fractional computations. We study numerically the affects of characteristic parameters and damping factor on the behavior of solution for fractional Mathieu differential equation. Some examples are presented to illustrate applicability and accuracy of the proposed method. The fractional derivatives order and the parameters of the Mathieu equation are changed to study the convergency of the numerical solutions.

2007 ◽  
Vol 7 (4) ◽  
pp. 321-340
Author(s):  
A. Masjukov

AbstractFor bivariate and trivariate interpolation we propose in this paper a set of integrable radial basis functions (RBFs). These RBFs are found as fundamental solutions of appropriate PDEs and they are optimal in a special sense. The condition number of the interpolation matrices as well as the order of convergence of the inter- polation are estimated. Moreover, the proposed RBFs provide smooth approximations and approximate fulfillment of the interpolation conditions. This property allows us to avoid the undecidable problem of choosing the right scale parameter for the RBFs. Instead we propose an iterative procedure in which a sequence of improving approx- imations is obtained by means of a decreasing sequence of scale parameters in an a priori given range. The paper provides a few clear examples of the advantage of the proposed interpolation method.


Author(s):  
Rafael Reséndiz ◽  
L. Héctor Juárez ◽  
Pedro González-Casanova ◽  
Daniel A. Cervantes ◽  
Christian Gout

2018 ◽  
Author(s):  
Eko Prasetya Budiana ◽  
Indarto Indarto ◽  
Deendarlianto Deendarlianto ◽  
Pranowo Pranowo

2006 ◽  
Vol 17 (08) ◽  
pp. 1151-1169 ◽  
Author(s):  
A. DURMUS ◽  
I. BOZTOSUN ◽  
F. YASUK

The numerical solutions of the unsteady transient-convective diffusion problems are investigated by using multiquadric (MQ) and thin-plate spline (TPS) radial basis functions (RBFs) based on mesh-free collocation methods with global basis functions. The results of radial basis functions are compared with the mesh-dependent boundary element and finite difference methods as well as the analytical solution for high Péclet numbers. It is reported that for low Péclet numbers, MQ-RBF provides excellent agreement, while for high Péclet numbers, TPS-RBF is better than MQ-RBF.


Author(s):  
Akbar Mohebbi ◽  
Mostafa Abbaszadeh ◽  
Mehdi Dehghan

Purpose – The purpose of this paper is to show that the meshless method based on radial basis functions (RBFs) collocation method is powerful, suitable and simple for solving one and two dimensional time fractional telegraph equation. Design/methodology/approach – In this method the authors first approximate the time fractional derivatives of mentioned equation by two schemes of orders O(τ3−α) and O(τ2−α), 1/2<α<1, then the authors will use the Kansa approach to approximate the spatial derivatives. Findings – The results of numerical experiments are compared with analytical solution, revealing that the obtained numerical solutions have acceptance accuracy. Originality/value – The results show that the meshless method based on the RBFs and collocation approach is also suitable for the treatment of the time fractional telegraph equation.


Sign in / Sign up

Export Citation Format

Share Document