scholarly journals A Simulation Model for Pedestrian Crowd Evacuation Based on Various AI Techniques

2019 ◽  
Vol 33 (4) ◽  
pp. 283-292 ◽  
Author(s):  
Danial A. Muhammed ◽  
Soran A.M. Saeed ◽  
Tarik A. Rashid
2020 ◽  
Author(s):  
Danial A. Muhammed ◽  
Tarik A. Rashid ◽  
Abeer Alsadoon ◽  
Nebojsa Bacanin ◽  
Polla Fattah ◽  
...  

<p>This paper works on one of the most recent pedestrian crowd evacuation models, i.e., “a simulation model for pedestrian crowd evacuation based on various AI techniques”, developed in late 2019. This study adds a new feature to the developed model by proposing a new method and integrating it with the model. This method enables the developed model to find a more appropriate evacuation area design, among others regarding safety due to selecting the best exit door location among many suggested locations. This method is completely dependent on the selected model's output, i.e., the evacuation time for each individual within the evacuation process. The new method finds an average of the evacuees’ evacuation times of each exit door location; then, based on the average evacuation time, it decides which exit door location would be the best exit door to be used for evacuation by the evacuees. To validate the method, various designs for the evacuation area with various written scenarios were used. The results showed that the model with this new method could predict a proper exit door location among many suggested locations. Lastly, from the results of this research using the integration of this newly proposed method, a new capability for the selected model in terms of safety allowed the right decision in selecting the finest design for the evacuation area among other designs.</p>


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2171
Author(s):  
Danial A. Muhammed ◽  
Tarik A. Rashid ◽  
Abeer Alsadoon ◽  
Nebojsa Bacanin ◽  
Polla Fattah ◽  
...  

This paper works on one of the most recent pedestrian crowd evacuation models—i.e., “a simulation model for pedestrian crowd evacuation based on various AI techniques”—which was developed in late 2019. This study adds a new feature to the developed model by proposing a new method and integrating it into the model. This method enables the developed model to find a more appropriate evacuation area design regarding safety due to selecting the best exit door location among many suggested locations. This method is completely dependent on the selected model’s output—i.e., the evacuation time for each individual within the evacuation process. The new method finds an average of the evacuees’ evacuation times of each exit door location; then, based on the average evacuation time, it decides which exit door location would be the best exit door to be used for evacuation by the evacuees. To validate the method, various designs for the evacuation area with various written scenarios were used. The results showed that the model with this new method could predict a proper exit door location among many suggested locations. Lastly, from the results of this research using the integration of this newly proposed method, a new capability for the selected model in terms of safety allowed the right decision in selecting the finest design for the evacuation area among other designs.


2020 ◽  
Author(s):  
Danial A. Muhammed ◽  
Tarik A. Rashid ◽  
Abeer Alsadoon ◽  
Nebojsa Bacanin ◽  
Polla Fattah ◽  
...  

<p>This paper works on one of the most recent pedestrian crowd evacuation models, i.e., “a simulation model for pedestrian crowd evacuation based on various AI techniques”, developed in late 2019. This study adds a new feature to the developed model by proposing a new method and integrating it with the model. This method enables the developed model to find a more appropriate evacuation area design, among others regarding safety due to selecting the best exit door location among many suggested locations. This method is completely dependent on the selected model's output, i.e., the evacuation time for each individual within the evacuation process. The new method finds an average of the evacuees’ evacuation times of each exit door location; then, based on the average evacuation time, it decides which exit door location would be the best exit door to be used for evacuation by the evacuees. To validate the method, various designs for the evacuation area with various written scenarios were used. The results showed that the model with this new method could predict a proper exit door location among many suggested locations. Lastly, from the results of this research using the integration of this newly proposed method, a new capability for the selected model in terms of safety allowed the right decision in selecting the finest design for the evacuation area among other designs.</p>


Author(s):  
Zhongrui Ni ◽  
Zhen Liu ◽  
Tingting Liu ◽  
Yanjie Chai ◽  
Cuijuan Liu

The simulation of a crowd evacuating public buildings can be an important reference in planning the layout of buildings and formulating evacuation strategies. This paper proposes an agent-based crowd model; a crowd evacuation navigation simulation model is proposed for the multi-obstacle environment. We introduce the concept of navigation factor to describe the proximity of the navigation point to the exit. An algorithm for creating navigation points in multi-obstacle environment is proposed along with the global navigation and local navigation control algorithms of the crowd. We construct a crowd evacuation simulation prototype system with different simulation scenes using the scene editor. We conduct the crowd evacuation simulation experiment in the multi-obstacle scene, recording and analyzing the relevant experimental data. The simulation prototype system can be used to derive the evacuation time of the crowd and analyze the evacuation behavior of the crowd. It is expected to provide a visual deduction method for crowd management in an evacuation emergency.


2021 ◽  
Vol 133 ◽  
pp. 105029
Author(s):  
Wei Xie ◽  
Eric Wai Ming Lee ◽  
Tao Li ◽  
Meng Shi ◽  
Ruifeng Cao ◽  
...  

2018 ◽  
Vol 24 (10) ◽  
pp. 7611-7616 ◽  
Author(s):  
Noor Akma Abu Bakar ◽  
Mazlina Abdul Majid ◽  
Khalid Adam ◽  
Mario Allegra

2020 ◽  
Vol 5 ◽  
Author(s):  
Jianyu Wang ◽  
Jian Ma ◽  
Peng Lin

In the last decades, a series of terrible accidents happened within pedestrian crowds, which makes crowd dynamic a significant issue to be investigated. Literature reviews show that pedestrian flow presents different features within different architectural layout. In this paper, pedestrian movement properties at bottleneck are studied by carrying out series of experiments under laboratory condition. The influence of door sizes and exit locations on pedestrian crowd flow is investigated. It was found that larger door width resulted in shorter evacuation time and faster flow rate. By comparing the fundamental diagram among crowd evacuation, the average velocity increases as the width increases under the same density condition. Interestingly, the influence of the boundary layer, as well as the effective width on pedestrian crowd dynamic, was clearly observed. Our results suggest that the combination of exit width and location resulted in a synergistic effect, but the exit widths gradually became the most important factor influencing the flow rate.


2019 ◽  
Vol 113 ◽  
pp. 54-67 ◽  
Author(s):  
Nirajan Shiwakoti ◽  
Xiaomeng Shi ◽  
Zhirui Ye

Sign in / Sign up

Export Citation Format

Share Document