average velocity
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 125)

H-INDEX

29
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Huajie Qu ◽  
Chendong Liu ◽  
Lei Zhang ◽  
Jianjun Qu ◽  
Baoyu Song

As a new type of driver, linear ultrasonic motor (LUSM) is widely used in the high-tech field because of its low speed, high thrust, low noise, and no electromagnetic interference. However, as an actuator used in microdevices, most of the existing LUSMs are large in size and not compact in structure. In order to overcome these limitations, a new structure of linear ultrasonic motor’s stator is developed in this paper. The stator is similar to a tuning fork structure, which is divided into three parts: two driving feet, two driving legs, and the driving body. By using the first-order longitudinal vibration mode of the whole stator and the unique partial second-order bending vibration mode of the driving legs to achieve vibration mode degeneracy, a mode hybrid linear ultrasonic motor that is easy to miniaturize is proposed. Its working principle is analyzed. The dynamic analysis of the stator is carried out by using finite element software. The structure dimension of the stator and the driving frequency under the working mode are determined. At the same time, the feasibility of driving feet synthesizing elliptical motion is verified theoretically and experimentally. In addition, the LUSM test setup is built. The effects of driving frequency and Vpp on stator stall force and average velocity are studied. The results show that the maximum stall force can reach 99 mN, and the average velocity of the motor is 88.67 mm/s with Vpp = 320 V and driving frequency 80.2 kHz. The proposed LUSM is appropriate for use in occasions with quick return characteristics, like the controlling valve or nozzle of the printer. The research results provide guidance for the stator design of the linear ultrasonic motor.


Author(s):  
Aledia Bilali ◽  
Ulrich Fastenrath ◽  
Klaus Bogenberger

Ride pooling services are considered as a customer-centric mode of transportation, but, at the same time, an environmentally friendly one, because of the expected positive impacts on traffic congestion. This paper presents an analytical model that can estimate the traffic impacts of ride pooling on a city by using a previously developed shareability model, which captures the percentage of shared trips in an area, and the existence of a macroscopic fundamental diagram for the network of consideration. Moreover, the analytical model presented also investigates the impact that improving the average velocity of a city has on further increasing the percentage of shared trips in an operation area. The model is validated by means of microscopic traffic simulations for a ride pooling service operating in the city of Munich, Germany, where private vehicle trips are substituted with pooled vehicle trips for different penetration rates of the service. The results show that the average velocity in the city can be increased by up to 20% for the scenario when all private vehicle trips are substituted with pooled vehicle trips; however, the improvement is lower for smaller penetration rates of ride pooling. The operators and cities can use this study to quickly estimate the traffic impacts of introducing a ride pooling service in a certain area and for a certain set of service quality parameters.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Xi Mao ◽  
Sheng Huang ◽  
Yuchen Xu ◽  
Zhong Cheng ◽  
Jiehao Zhang

Nature-like fishway arrangements are commonly used because these structures imitate the characteristics of natural rivers and effectively allow fish to migrate past river sections blocked by hydraulic structures. In this paper, physical models were analyzed, and the velocity distributions of two different fishway structures (Types I and II) were compared. Results showed that the maximum mainstream velocity of the Type I structure was 5.3% lower than that of the Type II structure. However, the average mainstream velocity of the Type I structure was 21.1% greater than that of the Type II structure. The total per-cycle length of the mainstream path in the Type II structure was 2.1 times greater than that of the Type I structure, which indicated that the length of the mainstream path was somewhat proportional to the average velocity of the mainstream. When the flow rate was kept constant, increases in the velocity of the main flow associated with changes in the internal structure of the fishway decreased the average velocity of the main flow, while decreases in the total length of the flow path led to increases in the average velocity of the main flow. Due to frictional head loss along the fishway and local head loss, as well as the overlaps between these factors, the overall flow rate gradually decreased every cycle, despite periodic fluctuations.


2021 ◽  
Vol 6 (2 (114)) ◽  
pp. 136-146
Author(s):  
Anatolii Usov ◽  
Mykola Slobodianiuk ◽  
Mark Nikolskyi

The high pressure fuel system is the fundamental system that forms the indicator of the minimum fuel consumption per unit of the vessel's path. The calculation of the optimal control of the vessel complex with the main diesel engine is performed according to the criterion of the minimum fuel consumption per unit path at a given average velocity of the vessel. The propulsion of a vessel with a main diesel engine is described by equations. The equations contain a significant number of parameters, the reduction of which is performed by introducing dimensionless quantities, followed by bringing the equations into dimensionless forms. This made it possible to present a solution to the optimal control law for the main vessel diesel engine as part of the vessel complex. Optimal control of the vessel complex under stormy navigation conditions has been investigated. The calculations of the control law of the vessel complex, which ensure the movement of the vessel with the maximum average velocity in conditions of stormy navigation, are presented. It is determined that the established law of control of the vessel complex ensures the minimum fuel consumption per mile at a given average velocity of its movement. The influence of a high-pressure fuel system on the optimal control of a vessel diesel engine has been investigated. Thus, the calculated studies indicate that for all values of the parameters of the vessel complex according to the law of control of the fuel system Ф=а+b∙C2(τ), they give fuel savings up to 6% per unit of way in comparison with the law of control of the vessel complex Ф=а+b∙(c1(τ)/c2(τ)). The obtained ratios during modeling and optimal control of the main diesel engine of the vessel complex allow using the dynamic programming method to analyze the fuel consumption per unit path with optimal control compared to the corresponding constant control


2021 ◽  
Vol 9 (6) ◽  
pp. 449-463
Author(s):  
Vyacheslav Ivanov ◽  
Mikhail Konyzhev ◽  
Tatyana Kamolova ◽  
Anna Dorofeyuk

The propagation and structure of a microplasma discharge initiated in vacuum by a pulsed plasma flow with a density of 1013 cm–3 on the surface of a titanium sample covered with a thin continuous dielectric titanium oxide film with a shickness of 2–6 nm were studied experimentally when the electric current of the discharge changes from 50 A to 400 A. It was found that the microplasma discharge glow visually at the macroscale has a branched structure of the dendrite type, which at the microscale consists of a large number of brightly glowing “point” formations – cathode spots localized on the metal surface. The resulting erosion structure on the titanium surface is visually “identical” to the structure of the discharge glow and consists of a large number of separate non-overlapping microcraters with characteristic sizes from 0.1–3 μm, which are formed at the sites of localization of cathode spots at distances of up to 20 μm from each other. It was found that the propagation of a single microplasma discharge over the titanium surface covered with a thin oxide film a thickness of 2–6 nm occurs at an average velocity of 15–70 m/s when the amplitude of the discharge electric current changes in the range of 50–400 A. In this case, the microplasma discharge propagation on the microscale has a “jumping” character: the plasma of “motionless” burning cathode spots, during their lifetime 1 μs, initiates the excitation of new microdischarges, which create new cathode spots at localization distances of 1–20 μm from the primary cathode spots. This process repeated many times during a microplasma dis- charge pulse with a duration from 0.1 ms to 20 ms.


2021 ◽  
Vol 57 (6) ◽  
pp. 72-78
Author(s):  
М. И. Баранов ◽  

The paper demonstrates the results of approximate calculations on the establishment of basic features of the propagation of standing transversal electromagnetic waves (EMWs) and standing longitudinal de Broglie electronic waves in a homogeneous not massive non-magnetic metallic conductor of finite dimensions (the radius r0 and the length l0 >>r0) with the alternating axial-flow current of conductivity of i0(t) of different peak-temporal parameters. The correlation for the rated estimation of the average velocity of propagation of the standing transversal EMWs and standing longitudinal de Broglie electronic waves in a metal (alloy) of the indicated conductor is presented. It is shown that quantized standing transversal EMWs arising in a metallic conductor of finite dimensions substantially differ from ordinary transversal EMWs, propagated in the conducting environments of unlimited dimensions. An important feature of the standing transversal EMWs in the examined conductor is the fact that their tension of an axial-flow electric-field advances by a phase their tension of an azimuthal magnetic-field on the corner of π/2. It was established that in the standing transversal EMWs of the used conductor the energy of their electric field only passes into the energy of their magnetic field and vice versa. Therefore the standing transversal EMWs do not transfer the flows of the electromagnetic energy on the surface of the studied conductor.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012034
Author(s):  
M V Shestakov

Abstract In recent years, fluidic oscillators have been actively applied as devices for flow control in the field of aero and hydrodynamics. This study aims to investigate the structure of a flow of sweeping jet ejected from a fluidic oscillator into a confined area – slot channel. Dynamics of sweeping jet flow are investigated using the PIV method with high temporal resolution. The effect of the Re number on the sweeping jet oscillation frequency was studied in the range from 1 500 to 8 000. Linear frequency dependence on Re number was obtained. Bounding walls affect the dynamics of sweeping jet flow that leads to a change of average velocity field. For low Re numbers, obtained results are in good agreement with the results of other studies.


Author(s):  
Mohammed M. Al-Hatmi ◽  
Anton Purnama

Hydrodynamic interactions of a two-solid microspheres system in a viscous incompressible fluid at low Reynolds number is investigated analytically. One of the spheres is conducting and assumed to be actively in motion under the action of an external oscillator field, and as the result, the other nonconducting sphere moves due to the induced flow oscillation of the surrounding fluid. The fluid flow past the spheres is described by the Stokes equation and the governing equation in the vector form for the two-sphere system is solved asymptotically using the two-timing method. For illustrations, applying a simple oscillatory external field, a systematic description of the average velocity of each sphere is formulated. The trajectory of the sphere was found to be inversely proportional to the frequency of the external field. The results demonstrated that no collisions occur between the spheres as the system moves in a circular motion with a fixed separation distance.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012009
Author(s):  
V F Kopiev ◽  
M Yu Zaytsev ◽  
V A Kopiev

Abstract A study of the instantaneous and average velocity and vorticity fields in the flow created by the model helicopter rotor in the hover mode was carried out. The velocity fields of the flow generated by the model rotor were obtained by a two-dimensional TR PIV system, which provided two components of the velocity vector in the diagnostic light plane. The processing of the obtained raw images was carried out using a two-frame algorithm with adaptive interrogation windows. The experiments carried out have shown the possibility of using the PIV technique to visualize the tip vortex structure descending from the rotor blade. This possibility seems to be especially interesting as one of the means of validation of the numerical methods for calculating rotor aerodynamics and acoustics.


2021 ◽  
Author(s):  
C. Valeria Leon ◽  
Stefano E. Romero ◽  
Sebastian Merino ◽  
Eduardo Gonzalez ◽  
Benjamin Castaneda
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document