scholarly journals Signal of an autocorrelation low-coherence interferometer probing a layered object by a wave-field with wide angular spectrum

2021 ◽  
Vol 45 (3) ◽  
pp. 340-349
Author(s):  
D.V. Lyakin ◽  
V.P. Ryabukho

The effect of the width of the angular spectrum (numerical aperture) of a broadband-frequency wave-field probing a layered object on the signal of an autocorrelation low-coherence interferometer (ALCI) under spatially coherent and incoherent illumination of the entrance pupil is considered. It is found that under incoherent illumination an increase in the width of the angular spectrum of the field leads to a decrease in the amplitude, a change in the shape and position of the measuring signals of the interferometer due to decorrelation of the object field partial components which have reflected from various interlayer boundaries inside the object. In the case of coherent illumination, the ALCI signal is formed in a confocal mode, which leads to the amplitude extraction of the measurement signals are determined by the mutual correlations between a partial component reflected from the boundary on which the probing field was focused, and partial components of this field which have reflected from other boundaries within the object. This effect makes it possible to determine parameters of the internal layered structure of an object doing without apriori structure-related information. In this case, an increase in the numerical aperture of the probing light beam leads to an increase in the systematic error in determining the optical thicknesses of the layers, which can be estimated on the basis of the obtained expressions.

Author(s):  
V Yu Ovsyannikov ◽  
A A Berestovoy ◽  
N N Lobacheva ◽  
V V Toroptsev ◽  
S A Trunov

Author(s):  
Arata Masuda ◽  
Yuya Ogawa ◽  
Akira Sone

This paper presents an improvement of a nonlinear piezoelectric impedance modulation (NPIM)-based damage detection method, a damage-sensitive, baseline-free structural health monitoring technique proposed by the authors, by introducing self-excited oscillation. The NPIM-based damage detection utilizes the modulation of high-frequency wave field of structures caused by the contact acoustic nonlinearity at the damaged part. In this study, the high-frequency wave field is induced as a self-excited oscillation of the structure by positively feed-backing the strain signal measured by a surface-bonded piezoelectric sensor, followed by a phase-shift in 90 degrees and a nonlinear element consisting of a saturation element and a negative linear gain. The induced self-excitation can have multiple stable limit cycles at certain eigenmode frequencies, and one can switch among them by inputting an auxiliary excitation signal into the feedback loop. The current flowing through the piezoelectric sensor is measured to detect its modulation due to the stiffness fluctuation due to the existence of the contact-type damage. Experiments using a specimen with a simulated damage are conducted to examine the performance of the self-excitation circuit and its applicability to the NPIM-based damage detection method.


2006 ◽  
Author(s):  
Dmitry V. Lyakin ◽  
Vladimir P. Ryabukho ◽  
Vladislav V. Lychagov ◽  
Valery V. Tuchin

Sign in / Sign up

Export Citation Format

Share Document