scholarly journals On perfect powers which are sum or difference of two Lucas numbers

2021 ◽  
Vol 22 (2) ◽  
pp. 951
Author(s):  
Zafer Şiar ◽  
Refik Keskin
Keyword(s):  
2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


1989 ◽  
Vol 03 (14) ◽  
pp. 1071-1085 ◽  
Author(s):  
L. A. BURSILL ◽  
GEORGE RYAN ◽  
XUDONG FAN ◽  
J. L. ROUSE ◽  
JULIN PENG ◽  
...  

Observations of the sunflower Helianthus tuberosus reveal the occurrence of both Fibonacci and Lucas numbers of visible spirals (parastichies). This species is multi-headed, allowing a quantitative study of the relative abundance of these two types of phyllotaxis. The florets follow a spiral arrangement. It is remarkable that the Lucas series occurred, almost invariably, in the first-flowering heads of individual plants. The occurrence of left-and right-handed chirality was found to be random, within experimental error, using an appropriate chirality convention. Quantitative crystallographic studies allow the average growth law to be derived (r = alτ−1; θ = 2πl/(τ + 1), where a is a constant, l is the seed cell number and τ is the golden mean [Formula: see text]). They also reveal departures from classical theoretical models of phyllotaxis, taking the form of persistent oscillations in both divergence angle and radius. The experimental results are discussed in terms of a new theoretical model for the close-packing of growing discs. Finally, a basis for synthesis of (inorganic) spiral lattice structures is proposed.


1997 ◽  
Vol 25 (7) ◽  
pp. 15-22 ◽  
Author(s):  
R.K. Raina ◽  
H.M. Srivastava
Keyword(s):  

2021 ◽  
Vol 21 (2) ◽  
pp. 461-478
Author(s):  
HIND MERZOUK ◽  
ALI BOUSSAYOUD ◽  
MOURAD CHELGHAM

In this paper, we will recover the new generating functions of some products of Tribonacci Lucas numbers and orthogonal polynomials. The technic used her is based on the theory of the so called symmetric functions.


2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


2016 ◽  
Vol 66 (3) ◽  
Author(s):  
Emrah Kiliç ◽  
Helmut Prodinger

AbstractWe give a systematic approach to compute certain sums of squares of Fibonomial coefficients with finite products of generalized Fibonacci and Lucas numbers as coefficients. The technique is to rewrite everything in terms of a variable


2017 ◽  
Author(s):  
Arzu Coskun ◽  
Necati Taskara

Sign in / Sign up

Export Citation Format

Share Document