Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function

2021 ◽  
Vol 24 (4) ◽  
pp. 1220-1230
Author(s):  
Mohammed Al-Refai

Abstract In this paper, we formulate and prove two maximum principles to nonlinear fractional differential equations. We consider a fractional derivative operator with Mittag-Leffler function of two parameters in the kernel. These maximum principles are used to establish a pre-norm estimate of solutions, and to derive certain uniqueness and positivity results to related linear and nonlinear fractional initial value problems.

2015 ◽  
Vol 7 (1) ◽  
pp. 53-83 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Oyoon Abdul Razzaq ◽  
Fatima Riaz

Abstract In this paper, an extension is introduced into Max-Min Improved Euler methods for solving initial value problems of fuzzy fractional differential equations (FFDEs). Two modified fractional Euler type methods have been proposed and investigated to obtain numerical solutions of linear and nonlinear FFDEs. The proposed algorithms are tested on various illustrative examples. Exact values are also simulated to compare and discuss the closeness and accuracy of approximations so obtained. Comparatively, tables and graphs results reveal the complete reliability, efficiency and accuracy of the proposed methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Some new Gronwall-Bellman type inequalities are presented in this paper. Based on these inequalities, new explicit bounds for the related unknown functions are derived. The inequalities established can also be used as a handy tool in the research of qualitative as well as quantitative analysis for solutions to some fractional differential equations defined in the sense of the modified Riemann-Liouville fractional derivative. For illustrating the validity of the results established, we present some applications for them, in which the boundedness, uniqueness, and continuous dependence on the initial value for the solutions to some certain fractional differential and integral equations are investigated.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Adel Al-Rabtah ◽  
Shaher Momani ◽  
Mohamed A. Ramadan

Suitable spline functions of polynomial form are derived and used to solve linear and nonlinear fractional differential equations. The proposed method is applicable for0<α≤1andα≥1, whereαdenotes the order of the fractional derivative in the Caputo sense. The results obtained are in good agreement with the exact analytical solutions and the numerical results presented elsewhere. Results also show that the technique introduced here is robust and easy to apply.


Author(s):  
Mohamed I. Abbas

This paper is devoted to initial value problems for impulsive fractional differential equations of Caputo–Fabrizio type fractional derivative. By means of Banach’s fixed point theorem and Schaefer’s fixed point theorem, the existence and uniqueness results are obtained. Finally, an example is given to illustrate one of the main results.


Sign in / Sign up

Export Citation Format

Share Document