scholarly journals Zero Forcing Number of Some Families of Graphs

2021 ◽  
Vol 3 ◽  
pp. 48-52
Author(s):  
Victoria Petruk

The work is devoted to the study of the zero forcing number of some families of graphs. The concept of zero forcing is a relatively new research topic in discrete mathematics, which already has some practical applications, in particular, is used in studies of the minimum rank of the matrices of adjacent graphs. The zero forcing process is an example of the spreading process on graphs. Such processes are interesting not only in terms of mathematical and computer research, but also interesting and are used to model technical or social processes in other areas: statistical mechanics, physics, analysis of social networks, and so on. Let the vertices of the graph G be considered white, except for a certain set of S black vertices. We will repaint the vertices of the graph from white to black, using a certain rule.Colour change rule: A white vertex turns black if it is the only white vertex adjacent to the black vertex.[5] The zero forcing number Z(G) of the graph G is the minimum cardinality of the set of black vertices S required to convert all vertices of the graph G to black in a finite number of steps using the ”colour change rule”.It is known [10] that for any graph G, its zero forcing number cannot be less than the minimum degree of its vertices. Such and other already known facts became the basis for finding the zero forcing number for two given below families of graphs:A gear graph, denoted W2,n is a graph obtained by inserting an extra vertex between each pair of adjacent vertices on the perimeter of a wheel graph Wn. Thus, W2,n has 2n + 1 vertices and 3n edges.A prism graph, denoted Yn, or in general case Ym,n, and sometimes also called a circular ladder graph, is a graph corresponding to the skeleton of an n-prism.A wheel graph, denoted Wn is a graph formed by connecting a single universal vertex to all vertices of a cycle of length n.In this article some known results are reviewed, there is also a definition, proof and some examples of the zero forcing number and the zero forcing process of gear graphs and prism graphs.

2015 ◽  
Vol 07 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Linda Eroh ◽  
Cong X. Kang ◽  
Eunjeong Yi

The zero forcing number, Z(G), of a graph G is the minimum cardinality of a set S of black vertices (whereas vertices in V(G)\S are colored white) such that V(G) is turned black after finitely many applications of "the color-change rule": a white vertex is converted to a black vertex if it is the only white neighbor of a black vertex. Zero forcing number was introduced and used to bound the minimum rank of graphs by the "AIM Minimum Rank-Special Graphs Work Group". It is known that Z(G) ≥ δ(G), where δ(G) is the minimum degree of G. We show that Z(G) ≤ n - 3 if a connected graph G of order n has a connected complement graph [Formula: see text]. Further, we characterize a tree or a unicyclic graph G which satisfies either [Formula: see text] or [Formula: see text].


2019 ◽  
Vol 11 (1) ◽  
pp. 40-53
Author(s):  
Charles Dominic

Abstract A subset ℤ ⊆ V(G) of initially colored black vertices of a graph G is known as a zero forcing set if we can alter the color of all vertices in G as black by iteratively applying the subsequent color change condition. At each step, any black colored vertex has exactly one white neighbor, then change the color of this white vertex as black. The zero forcing number ℤ (G), is the minimum number of vertices in a zero forcing set ℤ of G (see [11]). In this paper, we compute the zero forcing number of the degree splitting graph (𝒟𝒮-Graph) and the complete degree splitting graph (𝒞𝒟𝒮-Graph) of a graph. We prove that for any simple graph, ℤ [𝒟𝒮(G)] k + t, where ℤ (G) = k and t is the number of newly introduced vertices in 𝒟𝒮(G) to construct it.


2020 ◽  
Vol 39 (3) ◽  
pp. 3873-3882
Author(s):  
Asefeh Karbasioun ◽  
R. Ameri

We introduce and study forcing number for fuzzy graphs. Also, we compute zero forcing numbers for some classes of graphs and extend this concept to fuzzy graphs. In this regard we obtain upper bounds for zero forcing of some classes of fuzzy graphs. We will proceed to obtain a new algorithm to computing zero forcing set and finding a formula for zero forcing number, and by some examples we illustrate these notions. Finally, we introduce some applications of fuzzy zero forcing in medical treatments.


2018 ◽  
Vol 68 (7) ◽  
pp. 1424-1433 ◽  
Author(s):  
Xinlei Wang ◽  
Dein Wong ◽  
Yuanshuai Zhang

2015 ◽  
Vol 8 (1) ◽  
pp. 147-167 ◽  
Author(s):  
Adam Berliner ◽  
Cora Brown ◽  
Joshua Carlson ◽  
Nathanael Cox ◽  
Leslie Hogben ◽  
...  

2018 ◽  
Vol 250 ◽  
pp. 363-367 ◽  
Author(s):  
Randy Davila ◽  
Thomas Kalinowski ◽  
Sudeep Stephen

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 354
Author(s):  
Gu-Fang Mou ◽  
Tian-Fei Wang ◽  
Zhong-Shan Li

For an m × n sign pattern P, we define a signed bipartite graph B ( U , V ) with one set of vertices U = { 1 , 2 , … , m } based on rows of P and the other set of vertices V = { 1 ′ , 2 ′ , … , n ′ } based on columns of P. The zero forcing number is an important graph parameter that has been used to study the minimum rank problem of a matrix. In this paper, we introduce a new variant of zero forcing set−bipartite zero forcing set and provide an algorithm for computing the bipartite zero forcing number. The bipartite zero forcing number provides an upper bound for the maximum nullity of a square full sign pattern P. One advantage of the bipartite zero forcing is that it can be applied to study the minimum rank problem for a non-square full sign pattern.


2019 ◽  
Vol 358 ◽  
pp. 305-313 ◽  
Author(s):  
Carlos A. Alfaro ◽  
Jephian C.-H. Lin

Sign in / Sign up

Export Citation Format

Share Document