scholarly journals Zero forcing number of graphs with a power law degree distribution

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Alexei Vazquez
2020 ◽  
Vol 39 (3) ◽  
pp. 3873-3882
Author(s):  
Asefeh Karbasioun ◽  
R. Ameri

We introduce and study forcing number for fuzzy graphs. Also, we compute zero forcing numbers for some classes of graphs and extend this concept to fuzzy graphs. In this regard we obtain upper bounds for zero forcing of some classes of fuzzy graphs. We will proceed to obtain a new algorithm to computing zero forcing set and finding a formula for zero forcing number, and by some examples we illustrate these notions. Finally, we introduce some applications of fuzzy zero forcing in medical treatments.


2018 ◽  
Vol 68 (7) ◽  
pp. 1424-1433 ◽  
Author(s):  
Xinlei Wang ◽  
Dein Wong ◽  
Yuanshuai Zhang

2021 ◽  
Author(s):  
Yanhua Tian

Power law degree distribution, the small world property, and bad spectral expansion are three of the most important properties of On-line Social Networks (OSNs). We sampled YouTube and Wikipedia to investigate OSNs. Our simulation and computational results support the conclusion that OSNs follow a power law degree distribution, have the small world property, and bad spectral expansion. We calculated the diameters and spectral gaps of OSNs samples, and compared these to graphs generated by the GEO-P model. Our simulation results support the Logarithmic Dimension Hypothesis, which conjectures that the dimension of OSNs is m = [log N]. We introduced six GEO-P type models. We ran simulations of these GEO-P-type models, and compared the simulated graphs with real OSN data. Our simulation results suggest that, except for the GEO-P (GnpDeg) model, all our models generate graphs with power law degree distributions, the small world property, and bad spectral expansion.


2015 ◽  
Vol 8 (1) ◽  
pp. 147-167 ◽  
Author(s):  
Adam Berliner ◽  
Cora Brown ◽  
Joshua Carlson ◽  
Nathanael Cox ◽  
Leslie Hogben ◽  
...  

2018 ◽  
Vol 250 ◽  
pp. 363-367 ◽  
Author(s):  
Randy Davila ◽  
Thomas Kalinowski ◽  
Sudeep Stephen

Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 354
Author(s):  
Gu-Fang Mou ◽  
Tian-Fei Wang ◽  
Zhong-Shan Li

For an m × n sign pattern P, we define a signed bipartite graph B ( U , V ) with one set of vertices U = { 1 , 2 , … , m } based on rows of P and the other set of vertices V = { 1 ′ , 2 ′ , … , n ′ } based on columns of P. The zero forcing number is an important graph parameter that has been used to study the minimum rank problem of a matrix. In this paper, we introduce a new variant of zero forcing set−bipartite zero forcing set and provide an algorithm for computing the bipartite zero forcing number. The bipartite zero forcing number provides an upper bound for the maximum nullity of a square full sign pattern P. One advantage of the bipartite zero forcing is that it can be applied to study the minimum rank problem for a non-square full sign pattern.


2019 ◽  
Vol 358 ◽  
pp. 305-313 ◽  
Author(s):  
Carlos A. Alfaro ◽  
Jephian C.-H. Lin

2020 ◽  
Vol 284 ◽  
pp. 179-194
Author(s):  
Meysam Alishahi ◽  
Elahe Rezaei-Sani ◽  
Elahe Sharifi

Sign in / Sign up

Export Citation Format

Share Document