scholarly journals Camassa-Holm equation on shallow water wave equation

2017 ◽  
Vol 5 (12) ◽  
pp. 7758-7764
Author(s):  
Sh. Hajrulla, L. Bezati, F. Hoxha

In this paper we can consider the problem of week solutions for the general shallow water wave equation. In the first part of this paper, we deal to the well-known Kdv equation. We obtain the Camassa-Holm equation in particular. Both of them describe unidirectional shallow water waves equation. Moreover, all these equations have a bi-Hamiltonian structure, they are completely integrable, they have infinitely many conserved quantities. From a mathematical point of view the Camassa-Holm equation is well studied. In the second part of this paper, we obtain a global weak solution as a limit of approximation under the assumption  Some concepts related to high dimensional spaces are considered. Then the Cauchy problem is considered. It has an admissible weak solution  to the Cauchy problem for  Existence, uniqueness, and basic energy estimate on this approximate solution sequence are given in some lemmas. Finally, the main theorem and the proof is given

2012 ◽  
Vol 2012 ◽  
pp. 1-23
Author(s):  
Ying Wang ◽  
YunXi Guo

A shallow water wave equation with a weakly dissipative term, which includes the weakly dissipative Camassa-Holm and the weakly dissipative Degasperis-Procesi equations as special cases, is investigated. The sufficient conditions about the existence of the global strong solution are given. Provided that(1-∂x2)u0∈M+(R),u0∈H1(R),andu0∈L1(R), the existence and uniqueness of the global weak solution to the equation are shown to be true.


2017 ◽  
Vol 31 (03) ◽  
pp. 1750012 ◽  
Author(s):  
Ya-Le Wang ◽  
Yi-Tian Gao ◽  
Shu-Liang Jia ◽  
Zhong-Zhou Lan ◽  
Gao-Fu Deng ◽  
...  

Under investigation in this paper is a (2[Formula: see text]+[Formula: see text]1)-dimensional generalized variable-coefficient shallow water wave equation which can be reduced to several integrable equations, such as the Korteweg–de Vries (KdV) equation and the Calogero–Bogoyavlenskii–Schiff (CBS) equation. Bilinear forms, Bäcklund transformation, Lax pair and infinite conservation laws are derived based on the binary Bell polynomials. N-soliton solutions are constructed via the Hirota method. Propagation and interaction of the solitons are illustrated graphically: (i) variable coefficients affect the shape of the N-soliton interaction in the scaled space and time coordinates; (ii) positions of the solitons depend on the sign of wave numbers after each interaction; (iii) interaction of the solitons is elastic, i.e. the amplitude, velocity and shape of each soliton remain invariant after each interaction except for a phase shift.


2021 ◽  
Author(s):  
Gao-Fu Deng ◽  
Yi-Tian Gao ◽  
Xin Yu ◽  
Cui-Cui Ding ◽  
Ting-Ting Jia ◽  
...  

Abstract Shallow water waves are studied for the applications in hydraulic engineering and environmental engineering. In this paper, a (2+1)-dimensional extended shallow water wave equation is investigated. Hybrid solutions consisting of H -soliton, M -breather and J -lump solutions have been constructed via the modified Pfaffian technique, where H , M and J are the positive integers. One-breather solutions with a real function ϕ ( y ) are derived, where y is the scaled space variable, we notice that ϕ ( y ) influences the shapes of the background planes. Discussions on the hybrid waves consisting of one breather and one soliton indicate that the one breather is not affected by one soliton after interaction. One-lump solutions with ϕ ( y ) are obtained with the condition, where k 1 R and k 1 I are the real constants, we notice that the one lump consists of two low valleys and one high peak, as well as the amplitude and velocity keep invariant during its propagation. Hybrid waves consisting of the one lump and one soliton imply that the shape of the one soliton becomes periodic when ϕ ( y ) is changed from a linear function to a periodic function.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1439
Author(s):  
Chaudry Masood Khalique ◽  
Karabo Plaatjie

In this article, we investigate a two-dimensional generalized shallow water wave equation. Lie symmetries of the equation are computed first and then used to perform symmetry reductions. By utilizing the three translation symmetries of the equation, a fourth-order ordinary differential equation is obtained and solved in terms of an incomplete elliptic integral. Moreover, with the aid of Kudryashov’s approach, more closed-form solutions are constructed. In addition, energy and linear momentum conservation laws for the underlying equation are computed by engaging the multiplier approach as well as Noether’s theorem.


Nonlinearity ◽  
1994 ◽  
Vol 7 (3) ◽  
pp. 975-1000 ◽  
Author(s):  
P A Clarkson ◽  
E L Mansfield

Sign in / Sign up

Export Citation Format

Share Document