scholarly journals STEADY-STATE ANALYSIS AND DESIGN METHODOLOGY FOR CLASS-E² RESONANT DC/DC CONVERTERS BASED ON A NORMALIZED STATE-SPACE MODEL

2020 ◽  
Vol 25 (2) ◽  
pp. 209-218
Author(s):  
Lucas Sangoi Mendonça ◽  
João Pedro Scherer Cipriani ◽  
Thiago Cattani Naidon ◽  
Fábio Ecke Bisogno
2004 ◽  
Vol 37 (11) ◽  
pp. 215-220
Author(s):  
Manabu Kosaka ◽  
Hiroshi Uda ◽  
Eiichi Bamba ◽  
Hiroshi Shibata

2005 ◽  
Vol 128 (3) ◽  
pp. 746-749
Author(s):  
Manabu Kosaka ◽  
Hiroshi Uda ◽  
Eiichi Bamba ◽  
Hiroshi Shibata

This study proposes a new deterministic off-line identification method that obtains a state-space model using input and output data with steady state values. This method comprises of two methods: Zeroing the 0∼N-tuple integral values of the output error of single-input single-output transfer function model (Kosaka et al., 2004) and Ho-Kalman’s method (Zeiger and McEwen, 1974). Herein, we present a new method to derive a matrix similar to the Hankel matrix using multi-input and multi-output data with steady state values. State space matrices A, B, C, and D are derived from the matrix by the method shown in Zeiger and McEwen, 1974 and Longman and Juang, 1989. This method’s utility is that the derived state-space model is emphasized in the low frequency range under certain conditions. Its salient feature is that this method can identify use of step responses; consequently, it is suitable for linear mechanical system identification in which noise and vibration are unacceptable. Numerical simulations of multi-input multi-output system identification are illustrated.


Sign in / Sign up

Export Citation Format

Share Document