Commonsense Inference in Natural Language Processing (COIN) - Shared Task Report

2019 ◽  
Author(s):  
Simon Ostermann ◽  
Sheng Zhang ◽  
Michael Roth ◽  
Peter Clark
2019 ◽  
Vol 53 (2) ◽  
pp. 3-10
Author(s):  
Muthu Kumar Chandrasekaran ◽  
Philipp Mayr

The 4 th joint BIRNDL workshop was held at the 42nd ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019) in Paris, France. BIRNDL 2019 intended to stimulate IR researchers and digital library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometrics, and recommendation techniques that can advance the state-of-the-art in scholarly document understanding, analysis, and retrieval at scale. The workshop incorporated different paper sessions and the 5 th edition of the CL-SciSumm Shared Task.


Author(s):  
Yanshan Wang ◽  
Sunyang Fu ◽  
Feichen Shen ◽  
Sam Henry ◽  
Ozlem Uzuner ◽  
...  

BACKGROUND Semantic textual similarity is a common task in the general English domain to assess the degree to which the underlying semantics of 2 text segments are equivalent to each other. Clinical Semantic Textual Similarity (ClinicalSTS) is the semantic textual similarity task in the clinical domain that attempts to measure the degree of semantic equivalence between 2 snippets of clinical text. Due to the frequent use of templates in the Electronic Health Record system, a large amount of redundant text exists in clinical notes, making ClinicalSTS crucial for the secondary use of clinical text in downstream clinical natural language processing applications, such as clinical text summarization, clinical semantics extraction, and clinical information retrieval. OBJECTIVE Our objective was to release ClinicalSTS data sets and to motivate natural language processing and biomedical informatics communities to tackle semantic text similarity tasks in the clinical domain. METHODS We organized the first BioCreative/OHNLP ClinicalSTS shared task in 2018 by making available a real-world ClinicalSTS data set. We continued the shared task in 2019 in collaboration with National NLP Clinical Challenges (n2c2) and the Open Health Natural Language Processing (OHNLP) consortium and organized the 2019 n2c2/OHNLP ClinicalSTS track. We released a larger ClinicalSTS data set comprising 1642 clinical sentence pairs, including 1068 pairs from the 2018 shared task and 1006 new pairs from 2 electronic health record systems, GE and Epic. We released 80% (1642/2054) of the data to participating teams to develop and fine-tune the semantic textual similarity systems and used the remaining 20% (412/2054) as blind testing to evaluate their systems. The workshop was held in conjunction with the American Medical Informatics Association 2019 Annual Symposium. RESULTS Of the 78 international teams that signed on to the n2c2/OHNLP ClinicalSTS shared task, 33 produced a total of 87 valid system submissions. The top 3 systems were generated by IBM Research, the National Center for Biotechnology Information, and the University of Florida, with Pearson correlations of <i>r</i>=.9010, <i>r</i>=.8967, and <i>r</i>=.8864, respectively. Most top-performing systems used state-of-the-art neural language models, such as BERT and XLNet, and state-of-the-art training schemas in deep learning, such as pretraining and fine-tuning schema, and multitask learning. Overall, the participating systems performed better on the Epic sentence pairs than on the GE sentence pairs, despite a much larger portion of the training data being GE sentence pairs. CONCLUSIONS The 2019 n2c2/OHNLP ClinicalSTS shared task focused on computing semantic similarity for clinical text sentences generated from clinical notes in the real world. It attracted a large number of international teams. The ClinicalSTS shared task could continue to serve as a venue for researchers in natural language processing and medical informatics communities to develop and improve semantic textual similarity techniques for clinical text.


2012 ◽  
Vol 5s1 ◽  
pp. BII.S8931 ◽  
Author(s):  
James A. McCart ◽  
Dezon K. Finch ◽  
Jay Jarman ◽  
Edward Hickling ◽  
Jason D. Lind ◽  
...  

In 2007, suicide was the tenth leading cause of death in the U.S. Given the significance of this problem, suicide was the focus of the 2011 Informatics for Integrating Biology and the Bedside (i2b2) Natural Language Processing (NLP) shared task competition (track two). Specifically, the challenge concentrated on sentiment analysis, predicting the presence or absence of 15 emotions (labels) simultaneously in a collection of suicide notes spanning over 70 years. Our team explored multiple approaches combining regular expression-based rules, statistical text mining (STM), and an approach that applies weights to text while accounting for multiple labels. Our best submission used an ensemble of both rules and STM models to achieve a micro-averaged F1 score of 0.5023, slightly above the mean from the 26 teams that competed (0.4875).


2012 ◽  
Vol 5s1 ◽  
pp. BII.S8960 ◽  
Author(s):  
Bart Desmet ◽  
Véronique Hoste

This paper describes a system for automatic emotion classification, developed for the 2011 i2b2 Natural Language Processing Challenge, Track 2. The objective of the shared task was to label suicide notes with 15 relevant emotions on the sentence level. Our system uses 15 SVM models (one for each emotion) using the combination of features that was found to perform best on a given emotion. Features included lemmas and trigram bag of words, and information from semantic resources such as WordNet, SentiWordNet and subjectivity clues. The best-performing system labeled 7 of the 15 emotions and achieved an F-score of 53.31% on the test data.


2012 ◽  
Vol 5s1 ◽  
pp. BII.S8948 ◽  
Author(s):  
Hui Yang ◽  
Alistair Willis ◽  
Anne De Roeck ◽  
Bashar Nuseibeh

We describe the Open University team's submission to the 2011 i2b2/VA/Cincinnati Medical Natural Language Processing Challenge, Track 2 Shared Task for sentiment analysis in suicide notes. This Shared Task focused on the development of automatic systems that identify, at the sentence level, affective text of 15 specific emotions from suicide notes. We propose a hybrid model that incorporates a number of natural language processing techniques, including lexicon-based keyword spotting, CRF-based emotion cue identification, and machine learning-based emotion classification. The results generated by different techniques are integrated using different vote-based merging strategies. The automated system performed well against the manually-annotated gold standard, and achieved encouraging results with a micro-averaged F-measure score of 61.39% in textual emotion recognition, which was ranked 1st place out of 24 participant teams in this challenge. The results demonstrate that effective emotion recognition by an automated system is possible when a large annotated corpus is available.


2020 ◽  
Author(s):  
Maciej Rybinski ◽  
Xiang Dai ◽  
Sonit Singh ◽  
Sarvnaz Karimi ◽  
Anthony Nguyen

BACKGROUND The prognosis, diagnosis, and treatment of many genetic disorders and familial diseases significantly improve if the family history (FH) of a patient is known. Such information is often written in the free text of clinical notes. OBJECTIVE The aim of this study is to develop automated methods that enable access to FH data through natural language processing. METHODS We performed information extraction by using transformers to extract disease mentions from notes. We also experimented with rule-based methods for extracting family member (FM) information from text and coreference resolution techniques. We evaluated different transfer learning strategies to improve the annotation of diseases. We provided a thorough error analysis of the contributing factors that affect such information extraction systems. RESULTS Our experiments showed that the combination of domain-adaptive pretraining and intermediate-task pretraining achieved an F1 score of 81.63% for the extraction of diseases and FMs from notes when it was tested on a public shared task data set from the National Natural Language Processing Clinical Challenges (N2C2), providing a statistically significant improvement over the baseline (<i>P</i><.001). In comparison, in the 2019 N2C2/Open Health Natural Language Processing Shared Task, the median F1 score of all 17 participating teams was 76.59%. CONCLUSIONS Our approach, which leverages a state-of-the-art named entity recognition model for disease mention detection coupled with a hybrid method for FM mention detection, achieved an effectiveness that was close to that of the top 3 systems participating in the 2019 N2C2 FH extraction challenge, with only the top system convincingly outperforming our approach in terms of precision.


10.2196/23375 ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. e23375 ◽  
Author(s):  
Yanshan Wang ◽  
Sunyang Fu ◽  
Feichen Shen ◽  
Sam Henry ◽  
Ozlem Uzuner ◽  
...  

Background Semantic textual similarity is a common task in the general English domain to assess the degree to which the underlying semantics of 2 text segments are equivalent to each other. Clinical Semantic Textual Similarity (ClinicalSTS) is the semantic textual similarity task in the clinical domain that attempts to measure the degree of semantic equivalence between 2 snippets of clinical text. Due to the frequent use of templates in the Electronic Health Record system, a large amount of redundant text exists in clinical notes, making ClinicalSTS crucial for the secondary use of clinical text in downstream clinical natural language processing applications, such as clinical text summarization, clinical semantics extraction, and clinical information retrieval. Objective Our objective was to release ClinicalSTS data sets and to motivate natural language processing and biomedical informatics communities to tackle semantic text similarity tasks in the clinical domain. Methods We organized the first BioCreative/OHNLP ClinicalSTS shared task in 2018 by making available a real-world ClinicalSTS data set. We continued the shared task in 2019 in collaboration with National NLP Clinical Challenges (n2c2) and the Open Health Natural Language Processing (OHNLP) consortium and organized the 2019 n2c2/OHNLP ClinicalSTS track. We released a larger ClinicalSTS data set comprising 1642 clinical sentence pairs, including 1068 pairs from the 2018 shared task and 1006 new pairs from 2 electronic health record systems, GE and Epic. We released 80% (1642/2054) of the data to participating teams to develop and fine-tune the semantic textual similarity systems and used the remaining 20% (412/2054) as blind testing to evaluate their systems. The workshop was held in conjunction with the American Medical Informatics Association 2019 Annual Symposium. Results Of the 78 international teams that signed on to the n2c2/OHNLP ClinicalSTS shared task, 33 produced a total of 87 valid system submissions. The top 3 systems were generated by IBM Research, the National Center for Biotechnology Information, and the University of Florida, with Pearson correlations of r=.9010, r=.8967, and r=.8864, respectively. Most top-performing systems used state-of-the-art neural language models, such as BERT and XLNet, and state-of-the-art training schemas in deep learning, such as pretraining and fine-tuning schema, and multitask learning. Overall, the participating systems performed better on the Epic sentence pairs than on the GE sentence pairs, despite a much larger portion of the training data being GE sentence pairs. Conclusions The 2019 n2c2/OHNLP ClinicalSTS shared task focused on computing semantic similarity for clinical text sentences generated from clinical notes in the real world. It attracted a large number of international teams. The ClinicalSTS shared task could continue to serve as a venue for researchers in natural language processing and medical informatics communities to develop and improve semantic textual similarity techniques for clinical text.


2020 ◽  
Vol 27 (10) ◽  
pp. 1529-1537 ◽  
Author(s):  
Sam Henry ◽  
Yanshan Wang ◽  
Feichen Shen ◽  
Ozlem Uzuner

Abstract Objective The 2019 National Natural language processing (NLP) Clinical Challenges (n2c2)/Open Health NLP (OHNLP) shared task track 3, focused on medical concept normalization (MCN) in clinical records. This track aimed to assess the state of the art in identifying and matching salient medical concepts to a controlled vocabulary. In this paper, we describe the task, describe the data set used, compare the participating systems, present results, identify the strengths and limitations of the current state of the art, and identify directions for future research. Materials and Methods Participating teams were provided with narrative discharge summaries in which text spans corresponding to medical concepts were identified. This paper refers to these text spans as mentions. Teams were tasked with normalizing these mentions to concepts, represented by concept unique identifiers, within the Unified Medical Language System. Submitted systems represented 4 broad categories of approaches: cascading dictionary matching, cosine distance, deep learning, and retrieve-and-rank systems. Disambiguation modules were common across all approaches. Results A total of 33 teams participated in the MCN task. The best-performing team achieved an accuracy of 0.8526. The median and mean performances among all teams were 0.7733 and 0.7426, respectively. Conclusions Overall performance among the top 10 teams was high. However, several mention types were challenging for all teams. These included mentions requiring disambiguation of misspelled words, acronyms, abbreviations, and mentions with more than 1 possible semantic type. Also challenging were complex mentions of long, multi-word terms that may require new ways of extracting and representing mention meaning, the use of domain knowledge, parse trees, or hand-crafted rules.


2019 ◽  
Vol 26 (11) ◽  
pp. 1163-1171 ◽  
Author(s):  
Amber Stubbs ◽  
Michele Filannino ◽  
Ergin Soysal ◽  
Samuel Henry ◽  
Özlem Uzuner

Abstract Objective Track 1 of the 2018 National NLP Clinical Challenges shared tasks focused on identifying which patients in a corpus of longitudinal medical records meet and do not meet identified selection criteria. Materials and Methods To address this challenge, we annotated American English clinical narratives for 288 patients according to whether they met these criteria. We chose criteria from existing clinical trials that represented a variety of natural language processing tasks, including concept extraction, temporal reasoning, and inference. Results A total of 47 teams participated in this shared task, with 224 participants in total. The participants represented 18 countries, and the teams submitted 109 total system outputs. The best-performing system achieved a micro F1 score of 0.91 using a rule-based approach. The top 10 teams used rule-based and hybrid systems to approach the problems. Discussion Clinical narratives are open to interpretation, particularly in cases where the selection criterion may be underspecified. This leaves room for annotators to use domain knowledge and intuition in selecting patients, which may lead to error in system outputs. However, teams who consulted medical professionals while building their systems were more likely to have high recall for patients, which is preferable for patient selection systems. Conclusions There is not yet a 1-size-fits-all solution for natural language processing systems approaching this task. Future research in this area can look to examining criteria requiring even more complex inferences, temporal reasoning, and domain knowledge.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shaolin Zhu ◽  
Yong Yang ◽  
Chun Xu

Collecting parallel sentences from nonparallel data is a long-standing natural language processing research problem. In particular, parallel training sentences are very important for the quality of machine translation systems. While many existing methods have shown encouraging results, they cannot learn various alignment weights in parallel sentences. To address this issue, we propose a novel parallel hierarchical attention neural network which encodes monolingual sentences versus bilingual sentences and construct a classifier to extract parallel sentences. In particular, our attention mechanism structure can learn different alignment weights of words in parallel sentences. Experimental results show that our model can obtain state-of-the-art performance on the English-French, English-German, and English-Chinese dataset of BUCC 2017 shared task about parallel sentences’ extraction.


Sign in / Sign up

Export Citation Format

Share Document