scholarly journals Algorithm Study on Improving Application Efficiency of Independent Solar Power Supply System

2016 ◽  
Vol 3 (1) ◽  
pp. 5
Author(s):  
Jigang Cao

<p class="p1"><span class="s1">With the development of photovoltaic (PV) technologies, applications of photovoltaic have grown rapidly, indicating that the photovoltaic are attractive to produce environmentally benign electricity for diversified purposes. In order to maximize the use of solar energy, this thesis focuses on the PV power generation systems, which includes modeling of PV systems, maximum power point tracking (MPPT) methods for PV arrays. </span><span class="s1">Maximum Power Point Tracking (MPPT) method is an important means to improve the system efficiency of PV power generation system. MPPT theory and various MPPT algorithms are introduced in the literature. Based on those researches, this thesis proposes a novel implementation of an adaptive duty cycle P&amp;O algorithm that can reduce the main drawbacks commonly related to the traditional P&amp;O method.</span></p>

Author(s):  
B. I. Madububa ◽  
JP. C. Mbagwu ◽  
D. O. Isiohia

Maximum Power Point Tracking (MPPT) charge controller is designed for using an easy and effective way to charge a 12v battery and a laptop charger of 19v simultaneously through the principle of the bulk-boost converter. This research work is suitable for 150W solar panels, as the Maximum Power Point (MPP) of Photovoltaic (PV) power generation systems changes with variation in atmospheric conduction, an important consideration in the research work is the efficience of PV systems to track the Maximum Power Point (MPP) correctly. It enhances battery life by providing higher efficiency to it. The efficiency of the research work was calculated from the power dissipated, and also calculated the point at which the battery extracts maximum power from the PV module. As the work was tested, the voltage and current were obtained which was used to plot the voltage-current and voltage-power characteristics curve. Though a lot of works have been published on this topic, but none has researched on MPPT that can charge both 12v battery and 19v laptop charger simultaneously. Hence, this work is aimed at researching on Maximum Power Point Tracker (MPPT) that will be able to perform the above mentioned features. Also, it is the objective of this work to compare the theoretical and experimental relationship between MPPT and PWM charge controller which the efficiency of the MPPT was calculated theoretically to be 97% while, experimentally we obtained it as 91.1% while for PWM the efficiency was calculated theoretically as 75% and experimentally as 70.4% which shows that MPPT charge controller is approximately 30% efficient more than the PWM charge controller.


2015 ◽  
Vol 787 ◽  
pp. 227-232 ◽  
Author(s):  
L.A. Arun Shravan ◽  
D. Ebenezer

In recent years there has been a growing attention towards use of solar energy. Advantages of photovoltaic (PV) systems employed for harnessing solar energy are reduction of greenhouse gas emission, low maintenance costs, fewer limitations with regard to site of installation and absence of mechanical noise arising from moving parts. However, PV systems suffer from relatively low conversion efficiency. Therefore, maximum power point tracking (MPPT) for the solar array is essential in a PV system. The nonlinear behaviour of PV systems as well as variations of the maximum power point with solar irradiance level and temperature complicates the tracking of the maximum power point. This paper reviews various MPPT methods based on three categories: offline, online and hybrid methods. Design of a PV system in a encoding environment has also been reviewed here. Furthermore, different MPPT methods are discussed in terms of the dynamic response of the PV system to variations in temperature and irradiance, attainable efficiency, and implementation considerations.


Author(s):  
Yan Xiao ◽  
Yaoyu Li ◽  
John E. Seem ◽  
Kaushik Rajashekara

This paper presents a Maximum Power Point Tracking (MPPT) strategy for multi-string photovoltaic (PV) systems using the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm. The multi-string PV system considered is a decentralized control configuration, controlling the voltage reference to each PV module but based on the feedback of the total power at the DC bus. This requires only one pair of voltage and current measurements. The MPPT control problem for such topology of multi-string PV systems features a high input dimension, which can dramatically slow down the searching process for the real-time optimization process involved. The SPSA algorithm is considered in this study due to its remarkable capability of fast convergence for high dimensional search problems endorsed by various applications recently. Simulation study is performed for an 8-string PV system, and experimental study is performed for a 4-string PV system. Good performances are observed for both simulation and experimental results.


Sign in / Sign up

Export Citation Format

Share Document