scholarly journals Feature Selection using Multi-objective Genetic Algorith m: A Hybrid Approach

2015 ◽  
Vol 14 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Jyoti Ahuja ◽  
◽  
Saroj Dahiya Ratnoo ◽  
2020 ◽  
Vol 21 (S18) ◽  
Author(s):  
Sudipta Acharya ◽  
Laizhong Cui ◽  
Yi Pan

Abstract Background In recent years, to investigate challenging bioinformatics problems, the utilization of multiple genomic and proteomic sources has become immensely popular among researchers. One such issue is feature or gene selection and identifying relevant and non-redundant marker genes from high dimensional gene expression data sets. In that context, designing an efficient feature selection algorithm exploiting knowledge from multiple potential biological resources may be an effective way to understand the spectrum of cancer or other diseases with applications in specific epidemiology for a particular population. Results In the current article, we design the feature selection and marker gene detection as a multi-view multi-objective clustering problem. Regarding that, we propose an Unsupervised Multi-View Multi-Objective clustering-based gene selection approach called UMVMO-select. Three important resources of biological data (gene ontology, protein interaction data, protein sequence) along with gene expression values are collectively utilized to design two different views. UMVMO-select aims to reduce gene space without/minimally compromising the sample classification efficiency and determines relevant and non-redundant gene markers from three cancer gene expression benchmark data sets. Conclusion A thorough comparative analysis has been performed with five clustering and nine existing feature selection methods with respect to several internal and external validity metrics. Obtained results reveal the supremacy of the proposed method. Reported results are also validated through a proper biological significance test and heatmap plotting.


Author(s):  
E. MONTAÑÉS ◽  
J. R. QUEVEDO ◽  
E. F. COMBARRO ◽  
I. DÍAZ ◽  
J. RANILLA

Feature Selection is an important task within Text Categorization, where irrelevant or noisy features are usually present, causing a lost in the performance of the classifiers. Feature Selection in Text Categorization has usually been performed using a filtering approach based on selecting the features with highest score according to certain measures. Measures of this kind come from the Information Retrieval, Information Theory and Machine Learning fields. However, wrapper approaches are known to perform better in Feature Selection than filtering approaches, although they are time-consuming and sometimes infeasible, especially in text domains. However a wrapper that explores a reduced number of feature subsets and that uses a fast method as evaluation function could overcome these difficulties. The wrapper presented in this paper satisfies these properties. Since exploring a reduced number of subsets could result in less promising subsets, a hybrid approach, that combines the wrapper method and some scoring measures, allows to explore more promising feature subsets. A comparison among some scoring measures, the wrapper method and the hybrid approach is performed. The results reveal that the hybrid approach outperforms both the wrapper approach and the scoring measures, particularly for corpora whose features are less scattered over the categories.


2018 ◽  
Vol 9 (4) ◽  
pp. 22-36
Author(s):  
Mohammed Mahseur ◽  
Abdelmadjid Boukra ◽  
Yassine Meraihi

Multicast routing is the problem of finding the spanning tree of a set of destinations whose roots are the source node and its leaves are the set of destination nodes by optimizing a set of quality of service parameters and satisfying a set of transmission constraints. This article proposes a new hybrid multicast algorithm called Hybrid Multi-objective Multicast Algorithm (HMMA) based on the Strength Pareto Evolutionary Algorithm (SPEA) to evaluate and classify the population in dominated solutions and non-dominated solutions. Dominated solutions are evolved by the Bat Algorithm, and non-dominated solutions are evolved by the Firefly Algorithm. Old and weak solutions are replaced by new random solutions by a process of mutation. The simulation results demonstrate that the proposed algorithm is able to find good Pareto optimal solutions compared to other algorithms.


2018 ◽  
Vol 95 ◽  
pp. 266-280 ◽  
Author(s):  
Takfarinas Saber ◽  
David Brevet ◽  
Goetz Botterweck ◽  
Anthony Ventresque

Sign in / Sign up

Export Citation Format

Share Document