scholarly journals Historical and current landscape-scale ponderosa pine and mixed conifer forest structure in the Southern Sierra Nevada

Ecosphere ◽  
2015 ◽  
Vol 6 (5) ◽  
pp. art79 ◽  
Author(s):  
Scott L. Stephens ◽  
Jamie M. Lydersen ◽  
Brandon M. Collins ◽  
Danny L. Fry ◽  
Marc D. Meyer
2006 ◽  
Vol 36 (12) ◽  
pp. 3222-3238 ◽  
Author(s):  
Leda Kobziar ◽  
Jason Moghaddas ◽  
Scott L Stephens

During the late fall of 2002 we administered three burns in mixed conifer forest sites in the north-central Sierra Nevada. Eight months later we measured fire-induced injury and mortality in 1300 trees. Using logistic regression, an array of crown scorch, stem damage, fuels, and fire-behavior variables were examined for their influence on tree mortality. In Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), white fir (Abies concolor (Gord. & Glend.) Lindl.), and incense cedar (Calocedrus decurrens (Torr.) Florin), smaller trees with greater total crown damage had higher mortality rates. Smaller stem diameters and denser canopies predicted mortality best in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws). Duff consumption and bark char severity increased model discrimination for white fir and incense cedar and California black oak (Quercus kelloggii Newberry), respectively. In tanoak (Lithocarpus densiflorus (Hook. & Arn.) Rehd.), greater total crown damage in shorter trees resulted in higher mortality rates. Along with tree diameter and consumption of large (>7.6 cm diameter at breast height, DBH) rotten downed woody debris, fire intensity was a significant predictor of overall tree mortality for all species. Mortality patterns for white fir in relation to crown damage were similar among sites, while those for incense cedar were not, which suggests that species in replicated sites responded differently to similar burns. Our results demonstrate actual fire-behavior data incorporated into mortality models, and can be used to design prescribed burns for targeted reduction of tree density in mixed conifer forests.


2011 ◽  
Vol 261 (6) ◽  
pp. 989-994 ◽  
Author(s):  
Phillip J. van Mantgem ◽  
Nathan L. Stephenson ◽  
Eric Knapp ◽  
John Battles ◽  
Jon E. Keeley

2011 ◽  
Vol 41 (10) ◽  
pp. 2051-2063 ◽  
Author(s):  
Seth W. Bigelow ◽  
Malcolm P. North ◽  
Carl F. Salk

Many semi-arid coniferous forests in western North America have reached historically unprecedented densities over the past 150 years and are dominated by shade-tolerant trees. Silvicultural treatments generally open the canopy but may not restore shade-intolerant species. We determined crossover-point irradiance (CPI) (light at which the height growth rank of pairs of species changes) for seedlings in Sierra Nevada mixed-conifer forest and used these to interpret light environments produced by fuels-reduction thinning and group selection with reserved large trees. Nine of 21 species pairs had well-defined CPIs. The CPI of the most common shade-tolerant and intolerant species (white fir ( Abies concolor (Gordon & Glendl.) Lindl. ex Hildebr.) and ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson)) was 22.5 mol·m–2·day–1 or 41% of full sun. Median understory irradiance increased from 9.2 mol·m–2·day–1 (17% full sun) in pretreatment forest to 13 mol·m–2·day–1 (24% full sun) in lightly and 15.5 mol·m–2·day–1 (28% full sun) in moderately thinned stands and 37 mol·m–2·day–1 (67% full sun) in group-selection openings. We estimate that 5%–20% of ground area in lightly to moderately thinned stands would have enough light to favor shade-intolerant over shade-tolerant growth compared with 89% of ground area in group-selection openings. The CPI provides a tool to assess regeneration implications of treatment modification such as increasing heterogeneity of thinning to enhance regeneration or reserving large trees in group-selection openings to maintain wildlife habitat.


Sign in / Sign up

Export Citation Format

Share Document