scholarly journals A 4-choosable graph that is not (8:2)-choosable

Author(s):  
Zdeněk Dvořák ◽  
Xiaolan Hu ◽  
Jean-Sébastien Sereni

List coloring is a generalization of graph coloring introduced by Erdős, Rubin and Taylor in 1980, which has become extensively studied in graph theory. A graph G is said to be k-choosable, or k-list-colorable, if, for every way of assigning a list (set) of k colors to each vertex of G, it is possible to choose a color from each list in such a way that no two neighboring vertices receive the same color. Note that if the lists are all the same, then this is asking for G to have chromatic number at most k. One might think that the case where all the lists are the same would be the hardest: surely making the lists different should make it easier to ensure that neighboring vertices have different colors. Rather surprisingly, however, this is not the case. A counterexample is provided by the complete bipartite graph K2,4. If the two vertices in the first vertex class are assigned the lists {a,b} and {c,d}, while the vertices in the other vertex class are assigned the lists {a,c}, {a,d}, {b,c} and {b,d}, then it is easy to check that it is not possible to obtain a proper coloring from these lists, so G is not 2-choosable, and yet the chromatic number of G is 2. A famous theorem of Galvin, which solved the so-called Dinitz conjecture, states that the line graph of the complete bipartite graph Kn,n is n-choosable. Equivalently, if each square of an n×n grid is assigned a list of n colors, it is possible to choose a color from each list in such a way that no color appears more than once in any row or column. One can generalize this notion by requiring a choice of not just one color from each list, but some larger number of colors. A graph G is said to be (A,B)-list-colorable if, for every assignment of lists to the vertices of G, each consisting of A colors, there is an assignment of sets of B colors to the vertices such that each vertex is assigned a set that is a subset of its list and the sets assigned to pairs of adjacent vertices are disjoint. (When B=1 this simply says that G is A-choosable.) In this short paper, the authors answer a question that has remained open for almost four decades since it was posed by Erdős, Rubin and Taylor in their seminal paper: if a graph is (A,B)-list-colorable, is it true that it is also (mA,mB)-list-colorable for every m≥1? Quite surprisingly, the answer is again negative - the authors construct a graph that is (4,1)-list-colorable but not (8,2)-list-colorable.

2015 ◽  
Vol 07 (04) ◽  
pp. 1550040 ◽  
Author(s):  
P. C. Lisna ◽  
M. S. Sunitha

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by [Formula: see text], is the maximum integer [Formula: see text] such that G admits a b-coloring with [Formula: see text] colors. In this paper we introduce a new concept, the b-chromatic sum of a graph [Formula: see text], denoted by [Formula: see text] and is defined as the minimum of sum of colors [Formula: see text] of [Formula: see text] for all [Formula: see text] in a b-coloring of [Formula: see text] using [Formula: see text] colors. Also obtained the b-chromatic sum of paths, cycles, wheel graph, complete graph, star graph, double star graph, complete bipartite graph, corona of paths and corona of cycles.


2010 ◽  
Vol 02 (03) ◽  
pp. 433-436 ◽  
Author(s):  
XINHUI AN ◽  
BAOYINDURENG WU

The group coloring of graphs is a new kind of graph coloring, introduced by Jaeger et al. in 1992, and the group chromatic number of a graph G is denoted by χg (G). In this note, we prove that for a positive integer k, a graph G with χg (G)>k can be obtained from any complete bipartite graph G0 with χg(G0)>k by certain types of graph operations.


2015 ◽  
Vol 2 (2) ◽  
pp. 30-33
Author(s):  
Vijayalakshmi D ◽  
Mohanappriya G

A b-coloring of a graph is a proper coloring where each color admits at least one node (called dominating node) adjacent to every other used color. The maximum number of colors needed to b-color a graph G is called the b-chromatic number and is denoted by φ(G). In this paper, we find the b-chromatic number and some of the structural properties of corona product of crown graph and complete bipartite graphwith path graph.


2018 ◽  
Vol 5 (2) ◽  
pp. 11-15
Author(s):  
Aaresh R.R ◽  
Venkatachalam M ◽  
Deepa T

Dynamic coloring of a graph G is a proper coloring. The chromatic number of a graph G is the minimum k such that G has a dynamic coloring with k colors. In this paper we investigate the dynamic chromatic number for the Central graph, Middle graph, Total graph and Line graph of Web graph Wn denoted by C(Wn), M(Wn), T(Wn) and L(Wn) respectively.


2021 ◽  
Vol 27 (2) ◽  
pp. 191-200
Author(s):  
K. Kalaiselvi ◽  
◽  
N. Mohanapriya ◽  
J. Vernold Vivin ◽  
◽  
...  

An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex in V(G) has neighbors in at least $\min\{d(v),r\}$ different color classes. The r-dynamic chromatic number of graph G denoted as $\chi_r (G)$, is the least k such that G has a coloring. In this paper we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph $P_n\odot K_1$ denoted by $C(P_n\odot K_1), M(P_n\odot K_1), T(P_n\odot K_1), L(P_n\odot K_1), P(P_n\odot K_1)$ and $S(P_n\odot K_1)$ respectively by finding the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.


1970 ◽  
Vol 22 (5) ◽  
pp. 1082-1096 ◽  
Author(s):  
Don R. Lick ◽  
Arthur T. White

Graphs possessing a certain property are often characterized in terms of a type of configuration or subgraph which they cannot possess. For example, a graph is totally disconnected (or, has chromatic number one) if and only if it contains no lines; a graph is a forest (or, has point-arboricity one) if and only if it contains no cycles. Chartrand, Geller, and Hedetniemi [2] defined a graph to have property Pn if it contains no subgraph homeomorphic from the complete graph Kn+1 or the complete bipartite graphFor the first four natural numbers n, the graphs with property Pn are exactly the totally disconnected graphs, forests, outerplanar and planar graphs, respectively. This unification suggested the extension of many results known to hold for one of the above four classes of graphs to one or more of the remaining classes.


10.37236/5442 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Joshua E. Ducey ◽  
Jonathan Gerhard ◽  
Noah Watson

Let $R_{n}$ denote the graph with vertex set consisting of the squares of an $n \times n$ grid, with two squares of the grid adjacent when they lie in the same row or column.  This is the square rook's graph, and can also be thought of as the Cartesian product of two complete graphs of order $n$, or the line graph of the complete bipartite graph $K_{n,n}$.  In this paper we compute the Smith group and critical group of the graph $R_{n}$ and its complement.  This is equivalent to determining the Smith normal form of both the adjacency and Laplacian matrix of each of these graphs.  In doing so we verify a 1986 conjecture of Rushanan.


Author(s):  
Remala Mounika Lakshmi, Et. al.

The ultimate objective of a piece of research work is to present the labelling of vertices in 3-PFG and labelling of distances in 3-PFG. Also, we characterize some of its properties. Later, we define the vertex and edge chromatic number BF- Complete Bipartite graph. Further we illustrated an example for BFRGS which represents a Route Network system.


Sign in / Sign up

Export Citation Format

Share Document