b-Chromatic sum of a graph

2015 ◽  
Vol 07 (04) ◽  
pp. 1550040 ◽  
Author(s):  
P. C. Lisna ◽  
M. S. Sunitha

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by [Formula: see text], is the maximum integer [Formula: see text] such that G admits a b-coloring with [Formula: see text] colors. In this paper we introduce a new concept, the b-chromatic sum of a graph [Formula: see text], denoted by [Formula: see text] and is defined as the minimum of sum of colors [Formula: see text] of [Formula: see text] for all [Formula: see text] in a b-coloring of [Formula: see text] using [Formula: see text] colors. Also obtained the b-chromatic sum of paths, cycles, wheel graph, complete graph, star graph, double star graph, complete bipartite graph, corona of paths and corona of cycles.

Let G = (V, E) be a finite, connected, undirected with no loops, multiple edges graph. Then the power dominator coloring of G is a proper coloring of G, such that each vertex of G power dominates every vertex of some color class. The minimum number of color classes in a power dominator coloring of the graph, is the power dominator chromatic number . Here we study the power dominator chromatic number for some special graphs such as Bull Graph, Star Graph, Wheel Graph, Helm graph with the help of induction method and Fan Graph. Suitable examples are provided to exemplify the results.


2021 ◽  
pp. 2150012
Author(s):  
P. C. Lisna ◽  
M. S. Sunitha

A b-coloring of a graph [Formula: see text] is a proper coloring of the vertices of [Formula: see text] such that there exist a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph [Formula: see text], denoted by [Formula: see text], is the largest integer [Formula: see text] such that [Formula: see text] has a b-coloring with [Formula: see text] colors. The b-chromatic sum of a graph [Formula: see text], denoted by [Formula: see text], is introduced and it is defined as the minimum of sum of colors [Formula: see text] of [Formula: see text] for any [Formula: see text] in a b-coloring of [Formula: see text] using [Formula: see text] colors. A graph [Formula: see text] is b-continuous, if it admits a b-coloring with [Formula: see text] colors, for every [Formula: see text]. In this paper, the [Formula: see text]-continuity property of corona of two cycles, corona of two star graphs and corona of two wheel graphs with unequal number of vertices is discussed. The b-continuity property of corona of any two graphs with same number of vertices is also discussed. Also, the b-continuity property of Mycielskian of complete graph, complete bipartite graph and paths are discussed. The b-chromatic sum of power graph of a path is also obtained.


1970 ◽  
Vol 22 (5) ◽  
pp. 1082-1096 ◽  
Author(s):  
Don R. Lick ◽  
Arthur T. White

Graphs possessing a certain property are often characterized in terms of a type of configuration or subgraph which they cannot possess. For example, a graph is totally disconnected (or, has chromatic number one) if and only if it contains no lines; a graph is a forest (or, has point-arboricity one) if and only if it contains no cycles. Chartrand, Geller, and Hedetniemi [2] defined a graph to have property Pn if it contains no subgraph homeomorphic from the complete graph Kn+1 or the complete bipartite graphFor the first four natural numbers n, the graphs with property Pn are exactly the totally disconnected graphs, forests, outerplanar and planar graphs, respectively. This unification suggested the extension of many results known to hold for one of the above four classes of graphs to one or more of the remaining classes.


2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


Author(s):  
Zdeněk Dvořák ◽  
Xiaolan Hu ◽  
Jean-Sébastien Sereni

List coloring is a generalization of graph coloring introduced by Erdős, Rubin and Taylor in 1980, which has become extensively studied in graph theory. A graph G is said to be k-choosable, or k-list-colorable, if, for every way of assigning a list (set) of k colors to each vertex of G, it is possible to choose a color from each list in such a way that no two neighboring vertices receive the same color. Note that if the lists are all the same, then this is asking for G to have chromatic number at most k. One might think that the case where all the lists are the same would be the hardest: surely making the lists different should make it easier to ensure that neighboring vertices have different colors. Rather surprisingly, however, this is not the case. A counterexample is provided by the complete bipartite graph K2,4. If the two vertices in the first vertex class are assigned the lists {a,b} and {c,d}, while the vertices in the other vertex class are assigned the lists {a,c}, {a,d}, {b,c} and {b,d}, then it is easy to check that it is not possible to obtain a proper coloring from these lists, so G is not 2-choosable, and yet the chromatic number of G is 2. A famous theorem of Galvin, which solved the so-called Dinitz conjecture, states that the line graph of the complete bipartite graph Kn,n is n-choosable. Equivalently, if each square of an n×n grid is assigned a list of n colors, it is possible to choose a color from each list in such a way that no color appears more than once in any row or column. One can generalize this notion by requiring a choice of not just one color from each list, but some larger number of colors. A graph G is said to be (A,B)-list-colorable if, for every assignment of lists to the vertices of G, each consisting of A colors, there is an assignment of sets of B colors to the vertices such that each vertex is assigned a set that is a subset of its list and the sets assigned to pairs of adjacent vertices are disjoint. (When B=1 this simply says that G is A-choosable.) In this short paper, the authors answer a question that has remained open for almost four decades since it was posed by Erdős, Rubin and Taylor in their seminal paper: if a graph is (A,B)-list-colorable, is it true that it is also (mA,mB)-list-colorable for every m≥1? Quite surprisingly, the answer is again negative - the authors construct a graph that is (4,1)-list-colorable but not (8,2)-list-colorable.


2015 ◽  
Vol 2 (2) ◽  
pp. 30-33
Author(s):  
Vijayalakshmi D ◽  
Mohanappriya G

A b-coloring of a graph is a proper coloring where each color admits at least one node (called dominating node) adjacent to every other used color. The maximum number of colors needed to b-color a graph G is called the b-chromatic number and is denoted by φ(G). In this paper, we find the b-chromatic number and some of the structural properties of corona product of crown graph and complete bipartite graphwith path graph.


2011 ◽  
Vol 3 (2) ◽  
pp. 321-329 ◽  
Author(s):  
R. Ponraj ◽  
J. X. V. Parthipan ◽  
R. Kala

Let G be a (p,q) graph. An injective map ƒ: V (G) →{±1, ±2,...,±p} is called a pair sum labeling if the induced edge function, ƒe: E(G)→Z -{0} defined by ƒe (uv)=ƒ(u)+ƒ(v) is one-one and ƒe(E(G)) is either of the form {±k1, ±k2,…, ±kq/2} or {±k1, ±k2,…, ±k(q-1)/2} {k (q+1)/2} according as q is even or odd. Here we prove that every graph is a subgraph of a connected pair sum graph. Also we investigate the pair sum labeling of some graphs which are obtained from cycles. Finally we enumerate all pair sum graphs of order ≤ 5.Keywords: Cycle; Path; Bistar; Complete graph; Complete bipartite graph; Triangular snake.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.6290                 J. Sci. Res. 3 (2), 321-329 (2011)


Author(s):  
A. Mohammed Abid ◽  
T. R. Ramesh Rao

A strict strong coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of [Formula: see text] is called the strict strong chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we characterize the results on strict strong coloring of Mycielskian graphs and iterated Mycielskian graphs.


2020 ◽  
Vol 30 (1) ◽  
pp. 7-22
Author(s):  
Boris A. Pogorelov ◽  
Marina A. Pudovkina

AbstractThe Jevons group AS̃n is an isometry group of the Hamming metric on the n-dimensional vector space Vn over GF(2). It is generated by the group of all permutation (n × n)-matrices over GF(2) and the translation group on Vn. Earlier the authors of the present paper classified the submetrics of the Hamming metric on Vn for n ⩾ 4, and all overgroups of AS̃n which are isometry groups of these overmetrics. In turn, each overgroup of AS̃n is known to define orbital graphs whose “natural” metrics are submetrics of the Hamming metric. The authors also described all distance-transitive orbital graphs of overgroups of the Jevons group AS̃n. In the present paper we classify the distance-transitive orbital graphs of overgroups of the Jevons group. In particular, we show that some distance-transitive orbital graphs are isomorphic to the following classes: the complete graph 2n, the complete bipartite graph K2n−1,2n−1, the halved (n + 1)-cube, the folded (n + 1)-cube, the graphs of alternating forms, the Taylor graph, the Hadamard graph, and incidence graphs of square designs.


Sign in / Sign up

Export Citation Format

Share Document