Advances in Combinatorics
Latest Publications


TOTAL DOCUMENTS

23
(FIVE YEARS 22)

H-INDEX

1
(FIVE YEARS 1)

Published By Alliance Of Diamond Open Access Journals

2517-5599

2021 ◽  
Author(s):  
Dániel Korándi ◽  
Alexander Roberts ◽  
Alex Scott

Turán's Theorem says that an extremal Kr+1-free graph is r-partite. The Stability Theorem of Erdős and Simonovits shows that if a Kr+1-free graph with n vertices has close to the maximal tr(n) edges, then it is close to being r-partite. In this paper we determine exactly the Kr+1-free graphs with at least m edges that are farthest from being r-partite, for any m≥tr(n)−δrn2. This extends work by Erdős, Győri and Simonovits, and proves a conjecture of Balogh, Clemen, Lavrov, Lidický and Pfender.


2021 ◽  
Author(s):  
Michał Dębski ◽  
Piotr Micek ◽  
Felix Schröder ◽  
Stefan Felsner

A vertex coloring $\phi$ of a graph $G$ is $p$-centered if for every connected subgraph $H$ of $G$ either $\phi$ uses more than $p$ colors on $H$ or there is a color that appears exactly once on $H$. Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function $f$ such that for every $p\geq1$, every graph in the class admits a $p$-centered coloring using at most $f(p)$ colors. In this paper, we give upper bounds for the maximum number of colors needed in a $p$-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit $p$-centered colorings with $O(p^3\log p)$ colors where the previous bound was $O(p^{19})$; (2) bounded degree graphs admit $p$-centered colorings with $O(p)$ colors while it was conjectured that they may require exponential number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth $t$ that require $\binom{p+t}{t}$ colors in any $p$-centered coloring. This bound matches the upper bound; (5) there are planar graphs that require $\Omega(p^2\log p)$ colors in any $p$-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth $3$. We prove our results with various proof techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe-Marx structure theorem.


2021 ◽  
Author(s):  
James Davies

We prove that there are intersection graphs of axis-aligned boxes in R3 and intersection graphs of straight lines in R3 that have arbitrarily large girth and chromatic number.


2021 ◽  
Author(s):  
Vishesh Jain ◽  
Ashwin Sah ◽  
Mehtaab Sawhney

Let w=(w_1,...,w_n) be a vector from R^n. We show that for any n^{-2}<=eps<=1, if the number of zero-one vectors xi such that <xi,w>=tau is at least 2^{-eps*n}*2^n for some tau, then the number of values <xi,w> is at most 2^{O(eps^{1/2}n)} where xi ranges over all zero-one vectors. This exponentially improves the eps dependence in a recent result of Nederlof, Pawlewicz, Swennenhuis, and Węgrzycki and leads to a similar improvement in the parameterized (by the number of bins) runtime of bin packing.


2021 ◽  
Author(s):  
Jie Han ◽  
Yoshiharu Kohayakawa ◽  
Shoham Letzter ◽  
Guilherme Oliveira Mota ◽  
Olaf Parczyk

Given a hypergraph H, the size-Ramsey number r(H) is the smallest integer m such that there exists a graph G with m edges with the property that in any colouring of the edges of G with two colours there is amonochromatic copy of H. We prove that the size-Ramsey number of the 3-uniform tight path on n vertices P_n is linear in n, i.e., r(P_n)=O(n). This answers a question by Dudek, Fleur, Mubayi, and Rödl for 3-uniform hypergraphs [On the size-Ramsey number of hypergraphs, J. Graph Theory 86 (2016), 417-434], who proved r(P_n)=O(n^1.5*log^1.5 n).


2021 ◽  
Author(s):  
Jochen Pascal Gollin ◽  
Kevin Hendrey ◽  
Dillon Mayhew ◽  
Sang-il Oum

DeVos, Kwon, and Oum introduced the concept of branch-depth of matroids as a natural analogue of tree-depth of graphs. They conjectured that a matroid of sufficiently large branch-depth contains the uniform matroid Un;2n or the cycle matroid of a large fan graph as a minor. We prove that matroids with sufficiently large branch-depth either contain the cycle matroid of a large fan graph as a minor or have large branch-width. As a corollary, we prove their conjecture for matroids representable over a fixed finite field and quasi-graphic matroids, where the uniform matroid is not an option.


2021 ◽  
Author(s):  
Kasper S. Lyngsie ◽  
Martin Merker

The existence of cycles with a given length is classical topic in graph theory with a plethora of open problems. Examples related to the main result of this paper include a conjecture of Burr and Erdős from 1976 asked whether for every integer $m$ and a positive odd integer $k$, there exists $d$ such that every graph with average degree at least $d$ contains a cycle of length $m$ modulo $k$; this conjecture was proven by Bollobás in [Bull. London Math. Soc. 9 (1977), 97-98]( https://doi.org/10.1112/blms/9.1.97). Another example is a problem of Erdős from the 1990s asking whether there exists $A\subseteq\mathbb{N}$ with zero density and constants $n_0$ and $d_0$ such that every graph with at least $n_0$ vertices and the average degree at least $d_0$ contains a cycle with length in the set $A$, which was resolved by Verstraete in [J. Graph Theory 49 (2005), 151-167]( https://doi.org/10.1002/jgt.20072). In 1983, Thomassen conjectured that for all integers $m$ and $k$, every graph with minimum degree $k+1$ contains a cycle of length $2m$ modulo $k$. Note that the parity condition in the first and the third conjectures is necessary because of bipartite graphs. The current paper contributes to this long line of research by proving that for every integer $m$ and a positive odd integer $k$, every sufficiently large $3$-connected cubic graph contains a cycle of length $m$ modulo $k$. The result is the best possible in the sense that the same conclusion is not true for $2$-connected cubic graphs or $3$-connected graphs with minimum degree three.


2020 ◽  
Author(s):  
Noga Alon ◽  
Kai Zheng

Boolean functions play an important role in many different areas of computer science. The _local sensitivity_ of a Boolean function $f:\{0,1\}^n\to \{0,1\}$ on an input $x\in\{0,1\}^n$ is the number of coordinates whose flip changes the value of $f(x)$, i.e., the number of i's such that $f(x)\not=f(x+e_i)$, where $e_i$ is the $i$-th unit vector. The _sensitivity_ of a Boolean function is its maximum local sensitivity. In other words, the sensitivity measures the robustness of a Boolean function with respect to a perturbation of its input. Another notion that measures the robustness is block sensitivity. The _local block sensitivity_ of a Boolean function $f:\{0,1\}^n\to \{0,1\}$ on an input $x\in\{0,1\}^n$ is the number of disjoint subsets $I$ of $\{1,..,n\}$ such that flipping the coordinates indexed by $I$ changes the value of $f(x)$, and the _block sensitivity_ of $f$ is its maximum local block sensitivity. Since the local block sensitivity is at least the local sensitivity for any input $x$, the block sensitivity of $f$ is at least the sensitivity of $f$. The next example demonstrates that the block sensitivity of a Boolean function is not linearly bounded by its sensitivity. Fix an integer $k\ge 2$ and define a Boolean function $f:\{0,1\}^{2k^2}\to\{0,1\}$ as follows: the coordinates of $x\in\{0,1\}^{2k^2}$ are split into $k$ blocks of size $2k$ each and $f(x)=1$ if and only if at least one of the blocks contains exactly two entries equal to one and these entries are consecutive. While the sensitivity of the function $f$ is $2k$, its block sensitivity is $k^2$. The Sensitivity Conjecture, made by Nisan and Szegedy in 1992, asserts that the block sensitivity of a Boolean function is polynomially bounded by its sensivity. The example above shows that the degree of such a polynomial must be at least two. The Sensitivity Conjecture has been recently proven by Huang in [Annals of Mathematics 190 (2019), 949-955](https://doi.org/10.4007/annals.2019.190.3.6). He proved the following combinatorial statement that implies the conjecture (with the degree of the polynomial equal to four): any subset of more than half of the vertices of the $n$-dimensional cube $\{0,1\}^n$ induces a subgraph that contains a vertex with degree at least $\sqrt{n}$. The present article extends this result as follows: every Cayley graph with the vertex set $\{0,1\}^n$ and any generating set of size $d$ (the vertex set is viewed as a vector space over the binary field) satisfies that any subset of more than half of its vertices induces a subgraph that contains a vertex of degree at least $\sqrt{d}$. In particular, when the generating set consists of the $n$ unit vectors, the Cayley graph is the $n$-dimensional hypercube.


2020 ◽  
Author(s):  
Zachary Chase

Maximizing or minimizing the number of copies of a fixed graph in a large host graph is one of the most classical topics in extremal graph theory. Indeed, one of the most famous problems in extremal graph theory, the Erdős-Rademacher problem, which can be traced back to the 1940s, asks to determine the minimum number of triangles in a graph with a given number of vertices and edges. It was conjectured that the mnimum is attained by complete multipartite graphs with all parts but one of the same size whilst the remaining part may be smaller. The problem was widely open in the regime of four or more parts until Razborov resolved the problem asymptotically in 2008 as one of the first applications of his newly developed flag algebra method. This catalyzed a line of research on the structure of extremal graphs and extensions. In particular, Reiher asymptotically solved in 2016 the conjecture of Lovász and Simonovits from the 1970s that the same graphs are also minimizers for cliques of arbitrary size. This paper deals with a problem concerning the opposite direction: _What is the maximum number of triangles in a graph with a given number $n$ of vertices and a given maximum degree $D$?_ Gan, Loh and Sudakov in 2015 conjectured that the graph maximizing the number of triangles is always a union of disjoint cliques of size $D+1$ and another clique that may be smaller, and showed that if such a graph maximizes the number of triangles, it also maximizes the number of cliques of any size $r\ge 4$. The author presents a remarkably simple and elegant argument that proves the conjecture exactly for all $n$ and $D$.


2020 ◽  
Author(s):  
Christian Elbracht ◽  
Jakob Kneip ◽  
Maximilian Teegen

Tree-like decompositions play an important role both in structural combinatorics and algorithm design. The most well-known are [tree decompositions](https://en.wikipedia.org/wiki/Tree_decomposition) of graphs, which are of key importance in the Graph Minor Project of Robertson and Seymour as well as in algorithm design. The minimum width of a tree decomposition is the [treewidth](https://en.wikipedia.org/wiki/Treewidth) of a graph; this parameter captures how closely the global structure of a graph resembles a tree. In particular, a graph has treewidth one if and only if each of its components is a tree. Treewidth has a strong [duality property](https://en.wikipedia.org/wiki/Duality_(optimization)) in the sense of mathematical optimization: the minimum treewidth of a graph is equal to the maximum order of a [bramble](https://en.wikipedia.org/wiki/Bramble_(graph_theory)) increased by one; a bramble is a collection of touching connected subgraphs that cannot be hit by a small set of vertices. [Branchwidth](https://en.wikipedia.org/wiki/Branch-decomposition), which is linearly related to treewidth, is another important width parameter, and its dual parameter is the maximum order of a *tangle*, an object that is more amenable to generalizations to other combinatorial structures than a bramble. Informally speaking, a tangle picks for every separation a small part in a way that small parts of any three separations do not cover the whole structure. In the case of graphs, a tangle of order $k$ concerns vertex $k$-separations, i.e., pairs of subsets of the vertex set such that the union of the two subsets is the whole vertex set, the intersection has size at most $k$ and every edge is in one of the subsets. The main result of the article asserts that every tangle of a graph can be obtained by assigning weights to the vertices so that the small part of every $k$-separation is the one of smaller weight.


Sign in / Sign up

Export Citation Format

Share Document