IMPROVING PERFORMANCE IN AN ALUMINUM EXTRUSION PLANT USING DISCRETE EVENT SIMULATION: A CASE STUDY

2019 ◽  
Vol 5 (3) ◽  
pp. 77-85
Author(s):  
Tarek Al-Hawari ◽  
◽  
Ahmad Naimi ◽  
Hashim Zurikat ◽  
Mohamad Abu Obeid ◽  
...  
2015 ◽  
pp. 390-410
Author(s):  
Stavros T. Ponis ◽  
Angelos Delis ◽  
Sotiris P. Gayialis ◽  
Panagiotis Kasimatis ◽  
Joseph Tan

This paper highlights the opportunities and challenges of applying Discrete Event Simulation (DES) to support capacity planning of a network of outpatient facilities. Despite an abundance of studies using simulation techniques to examine the operation and performance of outpatient clinics, the problem of capacity allocation and planning of medical services within a network of outpatient healthcare facilities appears to be underexplored. Here, a case study of a health insurance provider that operates a network of six outpatient medical facilities in the US is used to illustrate and explore the synthesizing and adaptive, yet parsimonious nature of using DES methodology for network design and capacity planning. Results of this case study demonstrate that significant performance improvements for the network operator can be achieved with applying DES method to support the network facility capacity planning process.


2019 ◽  
Vol 25 (3) ◽  
pp. 476-498 ◽  
Author(s):  
Omogbai Oleghe ◽  
Konstantinos Salonitis

Purpose The purpose of this paper is to promote a system dynamics-discrete event simulation (SD-DES) hybrid modelling framework, one that is useful for investigating problems comprising multifaceted elements which interact and evolve over time, such as is found in TPM. Design/methodology/approach The hybrid modelling framework commences with system observation using field notes which culminate in model conceptualization to structure the problem. Thereafter, an SD-DEShybrid model is designed for the system, and simulated to proffer improvement programmes. The hybrid model emphasises the interactions between key constructs relating to the system, feedback structures and process flow concepts that are the hallmarks of many problems in production. The modelling framework is applied to the TPM operations of a bottling plant where sub-optimal TPM performance was affecting throughput performance. Findings Simulation results for the case study show that intangible human factors such as worker motivation do not significantly affect TPM performance. What is most critical is ensuring full compliance to routine and scheduled maintenance tasks and coordinating the latter to align with rate of machine defect creation. Research limitations/implications The framework was developed with completeness, generality and reuse in view. It remains to be applied to a wide variety of TPM and non-TPM-related problems. Practical implications The developed hybrid model is scalable and can fit into an existing discrete event simulation model of a production system. The case study findings indicate where TPM managers should focus their efforts. Originality/value The investigation of TPM using SD-DES hybrid modelling is a novelty.


2020 ◽  
Vol 40 (5) ◽  
pp. 619-632
Author(s):  
Isaac Corro Ramos ◽  
Martine Hoogendoorn ◽  
Maureen P. M. H. Rutten-van Mölken

Background. Evaluation of personalized treatment options requires health economic models that include multiple patient characteristics. Patient-level discrete-event simulation (DES) models are deemed appropriate because of their ability to simulate a variety of characteristics and treatment pathways. However, DES models are scarce in the literature, and details about their methods are often missing. Methods. We describe 4 challenges associated with modeling heterogeneity and structural, stochastic, and parameter uncertainty that can be encountered during the development of DES models. We explain why these are important and how to correctly implement them. To illustrate the impact of the modeling choices discussed, we use (results of) a model for chronic obstructive pulmonary disease (COPD) as a case study. Results. The results from the case study showed that, under a correct implementation of the uncertainty in the model, a hypothetical intervention can be deemed as cost-effective. The consequences of incorrect modeling uncertainty included an increase in the incremental cost-effectiveness ratio ranging from 50% to almost a factor of 14, an extended life expectancy of approximately 1.4 years, and an enormously increased uncertainty around the model outcomes. Thus, modeling uncertainty incorrectly can have substantial implications for decision making. Conclusions. This article provides guidance on the implementation of uncertainty in DES models and improves the transparency of reporting uncertainty methods. The COPD case study illustrates the issues described in the article and helps understanding them better. The model R code shows how the uncertainty was implemented. For readers not familiar with R, the model’s pseudo-code can be used to understand how the model works. By doing this, we can help other developers, who are likely to face similar challenges to those described here.


Sign in / Sign up

Export Citation Format

Share Document