scholarly journals Armbruster – Guckenheimer – Kim Hamiltonian System in $\bs 1$:$\bs 1$ Resonance

2021 ◽  
Vol 17 (1) ◽  
pp. 59-76
Author(s):  
M. Alvarez-Ramírez ◽  
◽  
A. García ◽  
J. Vidarte ◽  
◽  
...  

This article deals with the autonomous two-degree-of-freedom Hamiltonian system with Armbruster – Guckenheimer – Kim galactic potential in 1:1 resonance depending on two parameters. We detect periodic solutions and KAM 2-tori arising from linearly stable periodic solutions not found in earlier papers. These are established by using reduction, normalization, averaging and KAM techniques.

1959 ◽  
Vol 26 (3) ◽  
pp. 377-385
Author(s):  
R. M. Rosenberg ◽  
C. P. Atkinson

Abstract The natural modes of free vibrations of a symmetrical two-degree-of-freedom system are analyzed theoretically and experimentally. This system has two natural modes, one in-phase and the other out-of-phase. In contradistinction to the comparable single-degree-of-freedom system where the free vibrations are always orbitally stable, the natural modes of the symmetrical two-degree-of-freedom system are frequently unstable. The stability properties depend on two parameters and are easily deduced from a stability chart. For sufficiently small amplitudes both modes are, in general, stable. When the coupling spring is linear, both modes are always stable at all amplitudes. For other conditions, either mode may become unstable at certain amplitudes. In particular, if there is a single value of frequency and amplitude at which the system can vibrate in either mode, the out-of-phase mode experiences a change of stability. The experimental investigation has generally confirmed the theoretical predictions.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zihan Wang ◽  
Jieqiong Xu ◽  
Shuai Wu ◽  
Quan Yuan

The stability of grazing bifurcation is lost in three ways through the local analysis of the near-grazing dynamics using the classical concept of discontinuity mappings in the two-degree-of-freedom vibroimpact system with symmetrical constraints. For this instability problem, a control strategy for the stability of grazing bifurcation is presented by controlling the persistence of local attractors near the grazing trajectory in this vibroimpact system with symmetrical constraints. Discrete-in-time feedback controllers designed on two Poincare sections are employed to retain the existence of an attractor near the grazing trajectory. The implementation relies on the stability criterion under which a local attractor persists near a grazing trajectory. Based on the stability criterion, the control region of the two parameters is obtained and the control strategy for the persistence of near-grazing attractors is designed accordingly. Especially, the chaos near codimension-two grazing bifurcation points was controlled by the control strategy. In the end, the results of numerical simulation are used to verify the feasibility of the control method.


2005 ◽  
Vol 1 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Madeleine Pascal

A two degree of freedom oscillator with a colliding component is considered. The aim of the study is to investigate the dynamic behavior of the system when the stiffness obstacle changes to a finite value to an infinite one. Several cases are considered. First, in the case of rigid impact and without external excitation, a family of periodic solutions are found in analytical form. In the case of soft impact, with a finite time duration of the shock, and no external excitation, the existence of periodic solutions, with an arbitrary value of the period, is proved. Periodic motions are also obtained when the system is submitted to harmonic excitation, in both cases of rigid or soft impact. The stability of these periodic motions is investigated for these four cases.


Author(s):  
Daniël W. M. Veldman ◽  
Rob H. B. Fey ◽  
Hans Zwart

Single-degree-of-freedom (single-DOF) nonlinear mechanical systems under periodic excitation may possess multiple coexisting stable periodic solutions. Depending on the application, one of these stable periodic solutions is desired. In energy-harvesting applications, the large-amplitude periodic solutions are preferred, and in vibration reduction problems, the small-amplitude periodic solutions are desired. We propose a method to design an impulsive force that will bring the system from an undesired to a desired stable periodic solution, which requires only limited information about the applied force. We illustrate our method for a single-degree-of-freedom model of a rectangular plate with geometric nonlinearity, which takes the form of a monostable forced Duffing equation with hardening nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document