scholarly journals Control of Near-Grazing Dynamics in the Two-Degree-of-Freedom Vibroimpact System with Symmetrical Constraints

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zihan Wang ◽  
Jieqiong Xu ◽  
Shuai Wu ◽  
Quan Yuan

The stability of grazing bifurcation is lost in three ways through the local analysis of the near-grazing dynamics using the classical concept of discontinuity mappings in the two-degree-of-freedom vibroimpact system with symmetrical constraints. For this instability problem, a control strategy for the stability of grazing bifurcation is presented by controlling the persistence of local attractors near the grazing trajectory in this vibroimpact system with symmetrical constraints. Discrete-in-time feedback controllers designed on two Poincare sections are employed to retain the existence of an attractor near the grazing trajectory. The implementation relies on the stability criterion under which a local attractor persists near a grazing trajectory. Based on the stability criterion, the control region of the two parameters is obtained and the control strategy for the persistence of near-grazing attractors is designed accordingly. Especially, the chaos near codimension-two grazing bifurcation points was controlled by the control strategy. In the end, the results of numerical simulation are used to verify the feasibility of the control method.

1959 ◽  
Vol 26 (3) ◽  
pp. 377-385
Author(s):  
R. M. Rosenberg ◽  
C. P. Atkinson

Abstract The natural modes of free vibrations of a symmetrical two-degree-of-freedom system are analyzed theoretically and experimentally. This system has two natural modes, one in-phase and the other out-of-phase. In contradistinction to the comparable single-degree-of-freedom system where the free vibrations are always orbitally stable, the natural modes of the symmetrical two-degree-of-freedom system are frequently unstable. The stability properties depend on two parameters and are easily deduced from a stability chart. For sufficiently small amplitudes both modes are, in general, stable. When the coupling spring is linear, both modes are always stable at all amplitudes. For other conditions, either mode may become unstable at certain amplitudes. In particular, if there is a single value of frequency and amplitude at which the system can vibrate in either mode, the out-of-phase mode experiences a change of stability. The experimental investigation has generally confirmed the theoretical predictions.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 691-697 ◽  
Author(s):  
Ziwei Li ◽  
Jianjun Bai ◽  
Hongbo Zou

This article proposes an improved two-degree-of-freedom Smith predictive control method for typical industrial control systems. Smith predictive control is a classic control strategy designed for systems with pure lag. As an extension of Smith predictive control, internal model control can solve the time-delay problem effectively and make the controller design simple. Based on the two control algorithms, an enhanced control method with modified control structure is developed in this paper. In the design scheme, the set-point tracking and the disturbance rejection characteristics are decoupled, such that the set-point tracking and disturbance rejection controllers can be designed independently to achieve better control performance. The obtained control strategy possesses simple and convenient parameter tuning procedures. The validity of the proposed scheme is verified through theoretical analysis and simulation comparison with other control methods, and the results indicate that the proposed strategy shows better performance on set-point tracking and disturbance rejection.


2011 ◽  
Vol 11 (1) ◽  
pp. 16 ◽  
Author(s):  
Pisit Sukkarnkha ◽  
Chanin Panjapornpon

In this work, a new control method for uncertain processes is developed based on two-degree-of-freedom control structure. The setpoint tracking controller designed by input/output linearization technique is used to regulate the disturbance-free output and the disturbance rejection controller designed is designed by high-gain technique. The advantage of two-degree-of-freedom control structure is that setpoint tracking and load disturbance rejection controllers can be designed separately. Open-loop observer is applied to provide disturbance-free response for setpoint tracking controller. The process/disturbance-free model mismatches are fed to the disturbance rejection controller for reducing effect of disturbance. To evaluate the control performance, the proposed control method is applied through the example of a continuous stirred tank reactor with unmeasured input disturbances and random noise kinetic parametric uncertainties. The simulation results show that both types of disturbances can be effectively compensated by the proposed control method.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Yufeng Zhao ◽  
Wenbin Ji ◽  
Jiaheng Mu ◽  
Fengbao Hu

Purpose This paper aims to present a control method to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A constant force control strategy combined by extended state observer (ESO) and backstepping control is proposed. ESO is used to estimate the total disturbance to improve the anti-interference and stability of the system and Backstepping control is used to improve the response speed of the system. Findings The simulation and grinding experimental results show that, compared with the proportional integral differential control and active disturbance rejection control, the designed controller can improve the dynamic response performance and anti-interference ability of the system and can quickly track the expected force and improve the grinding quality of the hub surface. Originality/value The main contribution of this paper lies in the proposed of a new constant force control strategy, which significantly improved the stability and precision of grinding force.


Author(s):  
Hachmia Faqihi ◽  
Khalid Benjelloun ◽  
Maarouf Saad ◽  
Mohammed Benbrahim ◽  
M. Nabil Kabbaj

<p>One of the most efficient approaches to control a multiple degree-of-freedom robot manipulator is the virtual decomposition control (VDC). However, the use of the re- gressor technique in the conventionnal VDC to estimate the unknown and uncertaities parameters present some limitations. In this paper, a new control strategy of n-DoF robot manipulator, refering to reorganizing the equation of the VDC using the time delay estimation (TDE) have been investigated. In the proposed controller, the VDC equations are rearranged using the TDE for unknown dynamic estimations. Hence, the decoupling dynamic model for the manipulator is established. The stability of the overall system is proved based on Lyapunov theory. The effectiveness of the proposed controller is proved via case study performed on 7-DoF robot manipulator and com- pared to the conventionnal Regressor-based VDC according to some evalution criteria. The results carry out the validity and efficiency of the proposed time delay estimation- based virtual decomposition controller (TD-VDC) approach.</p>


2012 ◽  
Vol 516-517 ◽  
pp. 1437-1442
Author(s):  
Qiu Rui Zhang ◽  
Bao Ming Ge ◽  
Da Qiang Bi

At present, the rate of energy utilization is low for the transit regenerative braking on urban rail; most of the energy is consumed by the resistance heating. In this paper, a regenerative braking energy injected-grid device is designed, which makes use of regenerative braking energy and effectively reduce the temperature rise caused by the resistance in the tunnel. The paper describes the composition and the design procedure of regenerative braking energy injected-grid device and presents a control strategy of device. The simulation of the single train model verifies that the stability of DC-bus voltage can be maintained and more power can be feedback to the grid by the proposed device when the train is braking. The feasibility and effectiveness of the proposed control method are validated by the experimental results.


2013 ◽  
Vol 774-776 ◽  
pp. 44-47
Author(s):  
Bo Jiang

The mechanical model of the electro-rheological fluid damping adjustable isolator is established. Then the two degree of freedom vibration adjusting system of engine and car frame is built. The PD fuzzy control method is used to control the damping characteristic of the damping adjustable isolator. Simulation analysis is executed by using Matlab software. The datum of simulation analysis indicates that the isolation capability of the PD fuzzy control electro-rheological fluid damping adjustable isolator is well.


2014 ◽  
Vol 6 ◽  
pp. 537905 ◽  
Author(s):  
Dong Xu ◽  
Shaoguang Zhang ◽  
Li Wen

Fish are very efficient swimmers. In this paper, we studied a two degree-of-freedom (DOF) propeller that mimic fish caudal fin like locomotion. Kinematics modelling and hydrodynamic CFD analyses of the two DOF propellers were conducted. According to the CFD simulation, we show that negative power was generated within the flapping cycle, and wake flow at different instant was demonstrated. Based on the dynamic model, we compared the thrust efficiency under different stiffness control method. The results show that the thrust efficiency was enhanced under moderate stiffness control strategy.


Sign in / Sign up

Export Citation Format

Share Document