scholarly journals Effect of Neem Coated Urea on Nitrogen Uptake, Nitrogen Use Efficiency and Yield of Rice under Low Land Ecosystem of Godavari Delta of Andhra Pradesh, India

Author(s):  
A. Sireesha ◽  
J. Radha Krishna ◽  
P. V. Satyanarayana
Author(s):  
B. Balaganesh ◽  
P. Malarvizhi ◽  
N. Chandra Sekaran ◽  
P. Jeyakumar ◽  
K. R. Latha ◽  
...  

Controlled release nitrogen fertilizers could be an excellent management approach for improving nitrogen fertilizer efficiency. The present study aimed to investigate the effect of coated urea fertilizers to increase nitrogen uptake and utilization of maize. The nitrogen use efficiency of maize from various biodegradable polymer-coated urea fertilizers, such as palm stearin coated urea (PSCU), pine oleoresin coated urea (POCU), and humic acid coated urea (HACU), was determined in a pot culture experiment conducted at the Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, during 2021. The coating materials have been coated on urea with different coating thicknesses, viz., PSCU - 5, 10, 15%, POCU – 2, 4, 6%, and HACU - 5, 10, 15%. Among all the treatments, T11: HACU 15% produced highest grain yield (72.0g plant-1) followed by T7: POCU 4% (69.7 g plant-1) and T4: PSCU 10% (69.0g plant-1). In terms of dry matter production, T10: PSCU 10% produced maximum dry matter (186.5g plant-1), followed by T11: HACU 15% (186.2 g plant-1), and T7: POCU 4% (185.3g plant-1). The nitrogen uptake by the maize plant was higher in T7: POCU 4 % (1.62g plant-1), followed by T11: HACU 15% (1.59 g plant-1) and T4: PSCU 10% (1.59g plant-1). Irrespective of treatments, the highest nitrogen utilization by the maize crop was found in T7: POCU 4% (73.9%) followed by T4: PSCU 10% (71.1%) and T11: HACU 15% (70.9%) treatments. When compared to uncoated urea fertilizer, all coated urea fertilizers outperformed uncoated urea fertilizer in terms of grain yield, dry matter accumulation, and nitrogen uptake. To improve the nitrogen use efficiency, coated urea fertilizers prove to be a promising alternative to uncoated urea fertilizers.


Author(s):  
Yiman Jia ◽  
Zhengyi Hu ◽  
Yuxin Ba ◽  
Wenfang Qi

Abstract Background The use of biochar-based N fertilizers have been considered among the most effective strategy for reducing nitrogen loss and improving nitrogen use efficiency (NUE). However, effect and mechanism of biochar-coated urea (BCU) controlling the loss of nitrogen from soil and NUE are rarely reported. Methodology In this study, a 65-d culture pot experiment of oilseed rape was used to investigate the impact of BCU on nitrogen leaching, ammonia volatilization, soil nitrogen concentrations, soil pH, nitrogen uptake, NUE and oilseed rape biomass as compared with urea and urea combined with biochar at same nitrogen level. Results Results showed that the application of BCU could minimize nitrogen loss mainly by reducing nitrate leaching loss; which could be attributed to the slow-release performance of BCU, followed by biochar induced adsorption/fixation of nitrogen due to the porous nature and surface functional groups of biochar. However, the application of BCU enhanced ammonia volatilization due to the increase of soil NH4+–N concentration and pH value of microenvironment around urea by BCU. The application of BCU increased NUE by about 20% when compared with urea, since BCU reduced losses of nitrogen fertilizer and increased concentration of nitrogen in the soil as well as nitrogen uptake in oilseed rape. Furthermore, the reduction of nitrogen application by 20% when BCU served as a nitrogen source not only reduced nitrogen loss but significantly improved NUE, with no negative effect on the biomass of oilseed rape. Conclusion BCU can serve as a promising control release nitrogen fertilizer for reducing loss of nitrogen and increasing NUE. However further investigations are required to validate the dosage-effect relationship of BCU on crop yield at the field scale.


2008 ◽  
Vol 100 (2) ◽  
pp. 285 ◽  
Author(s):  
Y. Gan ◽  
S. S. Malhi ◽  
S. Brandt ◽  
F. Katepa-Mupondwa ◽  
C. Stevenson

2021 ◽  
Author(s):  
Daniel McKay Flecher ◽  
Siul Ruiz ◽  
Tiago Dias ◽  
Katherine Williams ◽  
Chiara Petroselli ◽  
...  

<p>Half of the nitrogen applied to arable-fields is lost through several processes linked to soil moisture. Low soil moisture limits nitrogen mobility reducing nitrogen-uptake while wetter conditions can increase nitrogen leaching. Rainfall ultimately governs soil moisture and the fate of nitrogen in soil. However, the interaction between rainfall and nitrogen use efficiency (NUE) remains poorly understood.</p> <p>We developed a field-scale modelling platform that describes coupled water and nitrogen transport, root growth and uptake, rainfall, the nitrogen-cycle and leaching to assess the NUE of split fertilisations with realistic rainfall patterns. The model was solved for every possible split fertilisation timing in 200+ growing seasons to determine optimal timings. Two previous field trials regarding rainfall and NUE had contrasting results: wetter years have enhanced fertiliser loss and drier years reduced plant nitrogen uptake. By choosing appropriate fertilisation timings in the model we could recreate the two contrasting trends and maintain variability in the data. However, we found by choosing other fertilisation timings we could mitigate the leaching in wetter years. Optimised timings could increase plant nitrogen uptake by up to 35% compared to the mean in dry years. Plant uptake was greatest under drier conditions due to mitigated leaching, but less likely to occur due to low nitrogen mobility. Optimal fertilisation timings varied dramatically depending on the rainfall patterns. Historic and projected rainfall patterns from 1950-2069 were used in the model. We found optimal NUE has a decrease from 2022-2040 due to increased heavy rainfall events and optimal fertilisation timings are later in the season but varied largely on a season-to-season basis.</p> <p>The results are a step towards achieving improved nitrogen efficiency in agriculture by using the ‘at the right time’ agronomic-strategy in the ‘4Rs’ of improved nitrogen fertilisation. Our results can help determine nitrogen fertilisation timings in changing climates.</p>


2008 ◽  
pp. 61-67 ◽  
Author(s):  
A. Battilani ◽  
F.L. Plauborg ◽  
S. Hansen ◽  
F. Dolezal ◽  
W. Mazurczyk ◽  
...  

2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Muhammad Anas ◽  
Fen Liao ◽  
Krishan K. Verma ◽  
Muhammad Aqeel Sarwar ◽  
Aamir Mahmood ◽  
...  

Abstract Nitrogen is the main limiting nutrient after carbon, hydrogen and oxygen for photosynthetic process, phyto-hormonal, proteomic changes and growth-development of plants to complete its lifecycle. Excessive and inefficient use of N fertilizer results in enhanced crop production costs and atmospheric pollution. Atmospheric nitrogen (71%) in the molecular form is not available for the plants. For world’s sustainable food production and atmospheric benefits, there is an urgent need to up-grade nitrogen use efficiency in agricultural farming system. The nitrogen use efficiency is the product of nitrogen uptake efficiency and nitrogen utilization efficiency, it varies from 30.2 to 53.2%. Nitrogen losses are too high, due to excess amount, low plant population, poor application methods etc., which can go up to 70% of total available nitrogen. These losses can be minimized up to 15–30% by adopting improved agronomic approaches such as optimal dosage of nitrogen, application of N by using canopy sensors, maintaining plant population, drip fertigation and legume based intercropping. A few transgenic studies have shown improvement in nitrogen uptake and even increase in biomass. Nitrate reductase, nitrite reductase, glutamine synthetase, glutamine oxoglutarate aminotransferase and asparagine synthetase enzyme have a great role in nitrogen metabolism. However, further studies on carbon–nitrogen metabolism and molecular changes at omic levels are required by using “whole genome sequencing technology” to improve nitrogen use efficiency. This review focus on nitrogen use efficiency that is the major concern of modern days to save economic resources without sacrificing farm yield as well as safety of global environment, i.e. greenhouse gas emissions, ammonium volatilization and nitrate leaching.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Nidhi Gupta ◽  
Atul K. Gupta ◽  
Vikram S. Gaur ◽  
Anil Kumar

Nitrogen responsiveness of three-finger millet genotypes (differing in their seed coat colour) PRM-1 (brown), PRM-701 (golden), and PRM-801 (white) grown under different nitrogen doses was determined by analyzing the growth, yield parameters and activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase; GOGAT, and glutamate dehydrogenase (GDH) at different developmental stages. High nitrogen use efficiency and nitrogen utilization efficiency were observed in PRM-1 genotype, whereas high nitrogen uptake efficiency was observed in PRM-801 genotype. At grain filling nitrogen uptake efficiency in PRM-1 negatively correlated with NR, GS, GOGAT activities whereas it was positively correlated in PRM-701 and PRM-801, however, GDH showed a negative correlation. Growth and yield parameters indicated that PRM-1 responds well at high nitrogen conditions while PRM-701 and PRM-801 respond well at normal and low nitrogen conditions respectively. The study indicates that PRM-1 is high nitrogen responsive and has high nitrogen use efficiency, whereas golden PRM-701 and white PRM-801 are low nitrogen responsive genotypes and have low nitrogen use efficiency. However, the crude grain protein content was higher in PRM-801 genotype followed by PRM-701 and PRM-1, indicating negative correlation of nitrogen use efficiency with source to sink relationship in terms of seed protein content.


Sign in / Sign up

Export Citation Format

Share Document